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Example: Basketball shooting

» Consider the shooting percentage for a basketball team over n
games: Y = (y1,...,¥n)

> Model y; % Beta(0,2)
p(yi|0) = 0(L+0)y! (1~ yi)
For 6 > 0.
» Use a Gamma(a, b) prior for 6

» Then,

n 0
P(9 ’ y) o 9n+afl(9 + 1)nefb9 <H y’_>

i=1
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Example: Basketball shooting

» p(f|y) does not correspond to a well-known pdf.

» The integral

/0”+a_1(9 + 1)"exp {—H(b + z": Iog(l/y,-)} dg (1)
i=1

does not have a simple closed form.

» Difficult to find posterior expectations, probabilities, posterior
posterior predictive, etc. without advanced computing

» Finding mode 8 = argmax p(0 | y) is simpler.
0

» Does not depend on normalizing constant (1)
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Example: Basketball shooting

» Assume a = b =1. The mode of p(f |y) is given by the
quadratic formula

d
g g p(01y) =0

S AP +BO+C=0

where
> A=>" logyi—1
> B=2n—-1+5>" logy
» C=n
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Example: Basketball shooting

@ Assume for n = 20 games Z?gl logy; = —9.89
@ Then, the posterior mode is 0 =3.24

@ Plot of “unnormalized” posterior density:
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http://www.ericfrazerlock.com/Asymptotic_Posterior_

Approximations_Rcodel.r
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Bayesian Central Limit Theorem

» Theorem: Assume y1, ..., Yy, are iid with pdf p(- | 8) and 6 has
prior pg. Then, under general conditions,

p(6 |y) ~ Normal(d, (/(y))™*)

where 0 is the posterior mode, and / is the Fisher information
matrix for p(6 | y):

) = = | g ey | 9)p(0)

=0

» Sometimes called the Bayesian Central Limit Theorem

» Conditions are that the mode 6 exists, p(y | 8) and p(6) are
positive and twice differentiable at #, and assumptions to
assure 6 is not a "boundary point”.
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Bayesian CLT “proof”

@ The Bayesian CLT is given by a second order Taylor expansion
about 6.

PUBH 8442: Bayes Decision Theory and Data Analysis



Alternative versions

@ Alternatively we could simply use the mean (1) and variance
V of p(6 |y) in the approximation:

p(0|y) ~ Normal(u, V).

o But if we know p and V/, there is likely no need to
approximate p(6 | y).

@ Alternatively, we could ignore the prior:

p(0 | y) =~ Normal(d, (/(y)) ™)
where 0 is the MLE, and [ is observed Fisher information

R 2

b0 =~ | gorgy, EPly )]

o Accuracy for moderate n depends on “flatness” of py.
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Example: Basketball shooting

» Fora=»b=1,

+0)?
0 ~ Normal | 6
p(f1y) ( (L ) Y )>

where 6 solves the quadratic given earlier:

b —B — /B2 —4AC
a 2A
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Example: Basketball shooting

@ Assume for n = 20 games Z?gl logy; = —9.89
@ Then, the posterior approximation is Normal(3.24,0.33)

@ Plot of approximated posterior density:
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Beta-binomial approximation

» Let y ~ Binomial(n, @) and 6 ~ Beta(a, b).

» Then,

—1
at+y—-1 b+n—-y—-1

02 (1—6)2

p(6 |y) ~ Normal | 4,

a+y—1

where 0 = S o=
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Beta-binomial approximation

» If a= b =1 then

p(0|y) ~ Normal ( , ————
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where § = y/n

» This corresponds to the standard frequentist approximation.
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