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Abstract

This supplemental article provides additional details and validation
for Bayesian consensus clustering (BCC). Section 1 gives full compu-
tational details for the algorithm under a normal-gamma model with
cluster-specific mean and variance. Section 2 illustrates the relation-
ship between overall and source-specific cluster sizes. Section 3 shows
the equivalence of BCC and MDI, under certain assumptions, when
M = 2 and K = 2. Section 4 illustrates the effect of the prior for α.
Section 5 provides full details for the clustering comparison simula-
tion in the main article. Section 6 provides computational details and
further analysis for the application to TCGA data given in the main
article.

1 Computational details

1.1 Normal-gamma model

Here we fill in the details for a specific case of the Bayesian computational
framework given in Section 4 of the main article. We assume Xi has a normal-
gamma mixture distribution with cluster-specific mean and variance. That
is,

Xmn|Lmn = k ∼ N(µmk,Σmk),

where

1



• µmk is a Dm dimensional mean vector, where Dm is the dimension of
data source m.

• Σmk is aDm×Dm diagonal covariance matrix, Σmk = Diag(σmk1, . . . , σmkDm).

We use a Dm dimensional normal-inverse-gamma prior distribution for θmk =
(µmk,Σmk) . That is,

θmk ∼ NΓ−1(ηm0, λ0, Am0, Bm0),

where ηm0, λ0,Am0 and Bm0 are hyperparameters. It follows that µmk and
Σmk are given by

• 1
σ2
mkd
∼ Gamma(Am0d, Bm0d), and

• µmkd ∼ N(ηm0,
σ2
mkd

λ0
) for d = 1, . . . , Dm.

By default we set λ0 = 1, and estimate µm0, Am0 and Bm0 from the mean
and variance of each variable in Xm.

The i’th iteration in the MCMC sampling scheme procedes as follows:

1. Generate Θ
(i)
m given {Xm,L(i−1)

m }, for m = 1, . . . ,M . The posterior

distribution for θ
(i)
mk, k = 1, . . . , K is

θ
(i)
mk ∼ NΓ−1(η

(i)
mk, λ

(i)
k , A

(i)
m0, B

(i)
m0).

Let Nmk be the number of samples allocated to cluster k in L(i−1)
m , X̄mk

be the sample mean vector for cluster k, and Smk the sample variance
vector for cluster k. The posterior normal-gamma parameters are

• η(i)
mk = λ0ηm0+NmkX̄mk

λ0+Nmk

• λ(i)
k = λ0 +Nmk

• A(i)
m0 = Am0 + n

2

• B(i)
m0 = Bm0 + NmkSmk

2
+ λ0Nmk(X̄mk−µm0)2

2(λ0+Nmk)
.

2. Generate L(i)
m given {Xm,Θ

(i)
m , α

(i−1)
m ,C(i−1)}, for m = 1, . . . ,M . The

posterior probability that L
(i)
mn = k for k = 1, . . . , K is proportional to

ν(k, C(i−1)
n , α(i−1)

m )fm(Xmn|θ(i)
mk),

where fm is the multivariate normal density defined by θmk = (µmk,Σmk).
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3. Generate α
(i)
m given {C(i−1),L(i)

m }, for m = 1, . . . ,M . The posterior

distribution for α
(i)
m is TBeta(am+ τm, bm+N − τm, 1

K
), where τm is the

number of samples n satisfying L
(i)
mn = C

(i−1)
n .

4. Generate C(i) given {L(i)
m ,Π(i−1), α(i)}. The posterior probability that

C
(i)
n = k for k = 1, . . . , K is proportional to

πk

M∏
m=1

ν(k, L(i)
mn, α

(i)
m ).

5. Generate Π(i) given C(i). The posterior distribution for Π(i) is Dirichlet
(β0 + ρ) where ρk is the number of samples allocated to cluster k in
C(i).

By default, we initialize L1, . . . ,Lk by a K-means clustering of each dataset.
After running the Markov chain for a specified number of iterations (e.g.,
10000), the method described in [2] is used to determine a hard clustering
for each of C, L1, . . . ,Lm.

For massive datasets parallel computating techniques may be used for the
computationally intensive steps (1) and (2) within each MCMC iteration.
However, these capabilities are not used in our current implementation.

1.2 Assuming equal adherence

It is straightforward to modify the procedure above under the assumption
that each data source adheres equally well to the overall clustering C. Rather
than modeling α1, . . . , αm separately, we assume α = α1 = . . . = αm. The
prior for α is a truncated beta distribution:

α ∼ TBeta(a, b,
1

K
).

The MCMC sampling scheme procedes exactly as above, except that in step
(3) we need only generate α(i) from the posterior distribution TBeta(a+τ, b+
NM − τ, 1

K
). Here τ =

∑M
m=1 τm, where the τm are as defined in step (3)

above.

2 Cluster size illustration

Recall that πk is the marginal probability that an object belongs to the overall
cluster k:

πk = P (Cn = k).
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The probability that an object belongs to a given source-specific cluster is
then

P (Lmn = k|Π) = πkαm + (1− πk)
1− αm
K − 1

.

As a consequence, the size of the source-specific clusters are generally more
uniform than the size of the overall clusters. In particular, the source-specific
clusterings Lm will generally represent more clusters than C, rather than
vice-versa.
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Figure 1: Marginal cluster inclusion probabilities are shown for the overall
clusters (Π) with K = 10 (top-left). The source-specific cluster probabilities
induced by Π are shown for the adherence levels αm = 0.95, 0.75 and 0.10.

As an illustration, we set K = 10 and assume the τk have the skewed
distribution shown in the top left panel of Figure 1. The marginal cluster
inclusion probabilities for a given data source depend on its adherence αm
to the overall clustering. Not surprisingly, for αm close to 1 the inclusion
probabilities closely resemble those for the overalll clustering (top right panel
of Figure 1). As αm approaches 1

K
, the inclusion probabilities are more

uniform (bottom two panels of Figure 1). In particular, clusters that had
zero probability to occur in C have positive probability to occur in Lm.
Hence, a sample that does not fit any overall pattern in a given data source
(e.g., an outlier) need not be allocated to an overall cluster.

4



3 Equivalence of BCC and MDI

Here we compare the MDI and BCC models for M = 2 data sources and
K = 2 clusters, giving conditions where the two models are equivalent under
a parameter substitution.

Assume α = α1 = α2, and let U = α
1−α . The joint distribution of (L1,L2)

under BCC is then

P ({Lmn = km}2
m=1|Π, α) ∝


π1U

2 + (1− π1) if k1 = k2 = 1
π1 + (1− π1)U2 if k1 = k2 = 2

U if k1 6= k2.

Assume π̃ = π̃1· = π̃2· and let φ = φ12 in the MDI clustering model. The
joint distribution of (L1,L2) under MDI is then

P ({Lmn = km}2
m=1|Π̃, φ) ∝


π̃2

1(1 + φ) if k1 = k2 = 1
(1− π̃1)2(1 + φ) if k1 = k2 = 2
π̃1(1− π̃1) if k1 6= k2.

It is straightforward to verify that the two forms are equivalent under the
substitutions

φ =

√(
(1− π1)U +

π1

U

)(
π1U +

1− π1

U

)
− 1

and

π̃1 =

√
(1− π1)U−1 + π1U√

(1− π1)U + π1U−1 +
√

(1− π1)U−1 + π1U
.

There is no such equivalence forM > 2 orK > 2, regardless of restrictions
on Π and Φ.

4 Prior comparison for α

We use a simple simulation to illustrate the effect of the prior distribution
for α. We generate datasets X1 : 1 × 200 and X2 : 1 × 200 as in Section 5.1
of the main article:

1. Let C define two clusters, where Cn = 1 for n ∈ {1, . . . , 100} and
Cn = 2 for n ∈ {101, . . . , 200}

2. Draw α from a Uniform(0.5, 1) distribution.
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3. For m = 1, 2 and n = 1, . . . , 200, generate Lmn ∈ {1, 2} so that
P (Lmn = Cn) = α and P (Lmn 6= Cn) = 1− α.

4. For m = 1, 2 draw values Xmn from a Normal(1.5, 1) distribution if
Lmn = 1 and from a Normal(−1.5, 1) distribution if Lmn = 2

We estimate the BCC model under the assumption that α = α1 = α2,
where α has prior distribution TBeta(a, b, 1

2
), for various values of a and b.

The uniform prior (a = b = 1) gives relatively unbiased results, as illustrated
in Figure 1 of the main manuscript. Figure 2 displays the estimated values
α̂ for alternative choices of a and b. Not surprisingly, for very precise priors
(large a and b) the α̂ are highly influenced by the prior and are therefore
inaccurate. However, the α̂ appear to be robust for moderately precise priors.
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Figure 2: Scatterplots of α̂ versus the true α are shown for various prior
distributions on α. Each prior is of the form TBeta(a, b, 1

2
), and the density

of each prior is shown below the relevant scatterplot.

5 Clustering comparison details

Here we describe the computational details for the four procedures used in
the clustering comparison study given in Section 5.2 of the main manuscript.
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For each procedure the MCMC algorithm ran for 1000 iterations (after 200
iterations of “burn-in”), and a hard clustering was determined as in Dahl [2].

5.1 Separate clustering

We use a normal-gamma mixture model to cluster each Xm. The marginal
probability thatXmn is allocated to cluster k is πmk, where Πm = (πm1, . . . , πmk) ∼
Dirichlet(β0). We use K = 2 clusters and β0 = (1, 1). The i’th iteration in
the MCMC sampling scheme procedes as follows:

1. Generate Θ
(i)
m given {Xm,L(i−1)

m }. The posterior distribution for θ
(i)
mk,

k = 1, . . . , K is

θ
(i)
mk ∼ NΓ−1(η

(i)
mk, λ

(i)
k , A

(i)
m0, B

(i)
m0).

Let Nmk be the number of samples allocated to cluster k in L(i−1)
m , X̄mk

be the sample mean vector for cluster k, and Smk the sample variance
vector for cluster k. The posterior normal-gamma parameters are

• η(i)
mk = λ0ηm0+NmkX̄mk

λ0+Nmk

• λ(i)
k = λ0 +Nmk

• A(i)
m0 = Am0 + n

2

• B(i)
m0 = Bm0 + NmkSmk

2
+ λ0Nmk(X̄mk−µm0)2

2(λ0+Nmk)
.

2. Generate L(i)
m given {Xm,Θ

(i)
m ,Π

(i−1)
m }. The posterior probability that

L
(i)
mn = k for k = 1, . . . , K is proportional to

πmkfm(Xmn|θ(i)
mk),

where fm is the multivariate normal density defined by θmk = (µmk,Σmk).

3. Generate Π
(i)
m given L(i)

m . The posterior distribution for Πmi =(i) is
Dirichlet (β0 + ρm) where ρmk is the number of samples allocated to

cluster k in L(i)
m .

5.2 Joint clustering

We use a normal-gamma mixture model to cluster the concatenated dataset

X =

 X1
...

XM

 .
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The computational details are exactly as in Section 5.1, except that we per-
form the algorithm on the joint data X rather than separately for each Xm.

5.3 Dependent clustering

For our dependent clustering model we let αm1m2 be the probability that
Lm1n = Lm2n, where αm1m2 ∼ TBeta(a, b, 1

K
). Hence, we model the clustering

dependence between each pair of datasets, rather than adherence to an overall
clustering. The marginal probability that Xmn is allocated to cluster k is πmk,
where Πm = (πm1, . . . , πmk) ∼ Dirichlet(β0). We use K = 2 clusters,β0 =
(1, 1), and a = b = 1. The i’th iteration in the MCMC sampling scheme
procedes as follows:

1. Generate Θ
(i)
1 given {Xm,L(i−1)

m }, as in step (1) of Section 1.1.

2. Generate L(i)
1 , . . . ,L

(i)
M given {X, α(i−1),Θ(i),Π(i−1)}. For n = 1, . . . , N ,

the joint posterior probability for {Lmn = km}Mm=1 is proportional to

M∏
m=1

π
(i−1)
mk fm(Xmn|θ(i)

mk)
M∏

m′=m+1

ν(km, km′ , α
(i−1)
mm′ ).

3. Generate α
(i)
m1m2 given {L(i)

m1 , L
(i)
m2}, for all pairs {(m1,m2) : m1 =

1, . . . ,M and m2 = (m1 + 1), . . . ,M} . The posterior distribution

for α
(i)
m1m2 is TBeta(a + τm1m2 , b + N − τm1m2 ,

1
K

), where τm1m2 is the

number of samples n satisfying L
(i)
m1n = L

(i)
m2n.

4. Generate Π
(i)
m given L(i)

m . The posterior distribution for Π
(i)
m is Dirichlet

(β0 + ρm) where ρmk is the number of samples allocated to cluster k in

L(i)
m .

5.4 BCC

We implement BCC as described in Section 1, assuming equal adherence.
We use K = 2 clusters, β0 = (1, 1), and a = b = 1.

6 TCGA application details

Here we provide more details for the application to heterogenous genomic
data from TCGA that is presented in Section 6 of the main article. We
focus on the application of BCC to GE, ME, miRNA and RPPA data for
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348 breast cancer tumor samples. For more information on the origin of
these data and pre-processing details see [1]. See http://people.duke.edu/
~el113/software.html for R code [3] to download and process these data
and to completely reproduce the analysis. This file also includes instructions
on how to download these data from the TCGA Data Portal.

6.1 Choice of K

We use the heuristic method described in Section 4.1 of the main article
to choose the number of clusters K. The full BCC model is estimated as
in Section 1, for the potential values K = 2, . . . , 10. We model the αm
separately, set am = bm = 1 for each m, and set β0 = (1, . . . , 1). We run
the MCMC sampling scheme for 10, 000 iterations for each K (the first 2000
iterations are used as a “burn-in”). We compute the mean adjusted adherence
ᾱ∗
K for each K. Figure 3 shows a point estimate for ᾱ∗

K (an average over the
MCMC iterations), as well as a 95% credible interval based on the MCMC
iterations, as a function of K. The maximum value is obtained for K = 3
( ᾱ∗

K = 0.57), although the adherence level is comparable for K = 4 and
K = 6.

6.2 MCMC mixing

We consider the 10, 000 MCMC draws for K = 3. Posterior estimation takes
∼ 30 minutes on a 2.30 GHz laptop with 4 GB ram. The draws appear to
mix well and they converge quickly to a stationary posterior distribution.
Figure 4 shows the draws for αm, m = 1, . . . , 4. These are the estimated
adherence to the overall clustering for GE, ME, miRNA and RPPA. They
appear to converge within the first 1000 iterations to an approximately sta-
tionary distribution. The average values are α = 0.91 for GE, α = 0.69
for ME, α = 0.56 for miRNA and α = 0.70 for RPPA. Figure 5 shows the
marginal overall cluster inclusion probabilities πk over the MCMC draws.
These also quickly converge to a stationary distribution. The average values
are π̂1 = 0.24, π̂2 = 0.28 and π̂3 = 0.48.

6.3 Normality diagnostics

Here we check the assumption that clusters are normally distributed for each
data source. To assess the overall distribution within each data source, we
standardize values for each feature:

zmnd =
Xmnd − X̄m·d

sm·d

9
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Figure 3: The mean adjusted adherence ᾱ∗
K is shown after estimating the

model with K = 2, . . . , 10. A point estimate given by the average of the
MCMC draws, and a credible interval given by the 2.5 and 97.5 percentiles
of the MCMC draws, are shown for each K.

where X̄m·d and sm·d are the mean and standard deviation for feature d in
data source m. Figure 6 (left) plots the quantiles of the standard normal
distribution against the overall quantiles for the standardized values of each
data source. These show significant skewness and bimodality. We then stan-
dardize data values within each source-specific cluster:

zmnd =
Xmnd − umLmnd

σmLmnd

,

where µmkd and σmkd are the estimated mean and standard deviation for clus-
ter k for feature d in data source m. The quantiles of the cluster-standarized
values are shown in Figure 6 (right) and agree closely with the quantiles of the
standard normal distribution. The Kolmogorov-Smirnov statistic between
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Figure 4: Values of αm are shown for the data sources GE, ME, miRNA and
RPPA over the 10,000 MCMC draws.

the empirical distribution function of the cluster standardized values and the
normal distribution was less than 0.05 for each data source (D = 0.043 for
GE,D = 0.034 for ME, 0.022 for miRNA and 0.021 for RPPA). Therefore,
the normal distribution seems to be a reasonable cluster model for each data
source.

6.4 Comparison with TCGA subtypes

Table 3 of the main article compares the overall clusters identified by BCC
with the four overall subtypes defined by TCGA. TCGA has also defined
subtypes that are particular to each data source, and we compare the source-
specific clusterings identified by BCC with the source-specific subtypes de-
fined by TCGA. Tables 1, 2, 3, and 4 show the cluster vs. subtype matching
matrix for GE, ME, miRNA and RPPA, respectively. The subtypes for GE
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Figure 5: Values of πk are shown for k = 1, 2, 3 over the 10,000 MCMC
draws.

and RPPA are named by TCGA according to their biological profile. In all
cases the two sample partitions have a significant association (p-value < 0.01;
Fisher’s exact test). However, these associations are not exceptionally strong,
suggesting that the two partitions may not be driven by the same structure
in the data.

6.5 Heatmaps

Figures 7, 8, 9, and 10 show heatmaps of the GE, ME, miRNA, and RPPA
datasets, respectively. The processed data that was used for clustering is
shown in each case. Samples (columns) are grouped by their relevant source-
specific cluster. For each heatmap a cluster effect is apparent in a large
number of variables (rows).
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Figure 6: Standard normal quantile-quantile (QQ) plots for each data source,
after standardizing values within each row/variable (right) and within each
source-specific cluster (left).

BCC cluster
GE 1 2 3

TCGA subtype

Basal 65 1 0
HER2 14 5 23

Luminal A 0 78 76
Luminal B 0 5 76
Normal 2 3 0

Table 1: BCC cluster vs. TCGA subtype matching matrix for GE data. The
GE subtypes are named according to their biological profile.

BCC cluster
ME 1 2 3

TCGA subtype

1 0 46 12
2 1 88 1
3 0 0 36
4 0 3 87
5 73 0 1

Table 2: BCC cluster vs. TCGA subtype matching matrix for ME data.
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BCC cluster
miRNA 1 2 3

TCGA subtype

1 10 9 8
2 10 14 25
3 23 4 4
4 41 66 9
5 47 3 0
6 8 43 5
7 1 8 10

Table 3: BCC cluster vs. TCGA subtype matching matrix for miRNA data.

BCC cluster
RPPA 1 2 3

TCGA subtype

Basal 61 1 7
Her2 29 1 13

Luminal A/B 1 14 105
ReacI 0 61 2
ReacII 7 34 0

Table 4: BCC cluster vs. TCGA subtype matching matrix for RPPA data.
The RPPA subtypes are named according to their biological profile.

6.6 Survival

Analysis of long-term survival for these data is limited by the relatively short
follow-up time (median 1.9 years) and low number of survival events (39
of 348). Nevertheless, both the three clusters identified by BCC and the
four comprehensive subtypes identified by TCGA show a difference in short-
term survival (Log-rank p-value = 0.04 and 0.001, respectively). Figure 11
gives Kaplan-Meier survival curves for each BCC cluster and TCGA subtype.
Among the BCC clusters Cluster 2 has the best prognosis (5-year survival =
0.94), followed by Cluster 3 (0.81) and Cluster 3 (0.67).
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cluster.

[3] R Development Core Team (2012). R: A Language and Environment for Statistical Computing. R Foun-

dation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0.

15



Color Key

−0.4 −0.2 0 0.1 0.3

ME with subtypes

1 2 3    

Samples

P
ro

be
s

Figure 8: Heatmap of the ME data; samples are grouped by their ME-specific
cluster.
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Figure 9: Heatmap of the miRNA data; samples are grouped by their
miRNA-specific cluster.
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Figure 10: Heatmap of the RPPA data; samples are grouped by their RPPA-
specific cluster.
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Figure 11: Short-term survival curves for the BCC clusters and TCGA sub-
types, using the Kaplan-Meier estimator.
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