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Abstract

Several modern applications require the integration of multiple large data matri-
ces that have shared rows and/or columns. For example, cancer studies that inte-
grate multiple omics platforms across multiple types of cancer, pan-omics pan-cancer
analysis, have extended our knowledge of molecular heterogenity beyond what was
observed in single tumor and single platform studies. However, these studies have
been limited by available statistical methodology. We propose a flexible approach
to the simultaneous factorization and decomposition of variation across such bidi-
mensionally linked matrices, BIDIFAC+. This decomposes variation into a series of
low-rank components that may be shared across any number of row sets (e.g., omics
platforms) or column sets (e.g., cancer types). This builds on a growing literature for
the factorization and decomposition of linked matrices, which has primarily focused
on multiple matrices that are linked in one dimension (rows or columns) only. Our
objective function extends nuclear norm penalization, is motivated by random matrix
theory, gives an identifiable decomposition under relatively mild conditions, and can
be shown to give the mode of a Bayesian posterior distribution. We apply BIDIFAC+
to pan-omics pan-cancer data from TCGA, identifying shared and specific modes of
variability across 4 different omics platforms and 29 different cancer types.
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1 Introduction

Data collection and curation for the Cancer Genome Atlas (TCGA) program completed in

2018, providing a unique and valuable public resource for comprehensive studies of molec-

ular profiles across several types of cancer (Hutter and Zenklusen, 2018). The database

includes information from several molecular platforms for over 10, 000 tumor samples from

individuals representing 33 types of cancer. The molecular platforms capture signal at

different ’omics levels (e.g., the genome, epigenome, transcriptome and proteome), which

are biologically related and can each influence the behavior of the tumor. Thus, when

studying molecular signals in cancer it is often necessary to consider data from multiple

omics sources at once. This and other applications have motivated a very active research

area in statistical methods for multi-omics integration.

A common task in multi-omics applications is to jointly characterize the molecular het-

erogeneity of the samples. Several multi-omics methods have been developed for this pur-

pose, which can be broadly categorized by (1) clustering methods that identify molecularly

distinct subtypes of the samples (Huo and Tseng, 2017; Lock and Dunson, 2013; Gabasova

et al., 2017), (2) factorization methods that identify continuous lower-dimensional patterns

of molecular variability (Lock et al., 2013; Argelaguet et al., 2018; Gaynanova and Li, 2019),

or methods that combine aspects of (1) and (2) (Shen et al., 2013; Mo et al., 2017; Hellton

and Thoresen, 2016). These extend classical approaches, such as (1) k-means clustering

and (2) principal components analysis, to the multi-omics context, allowing the exploration

of heterogeneity that is shared across the different ’omics sources while accounting for their

differences.

Several multi-omics analyses have been performed on the TCGA data, including flagship

publications for each type of cancer (e.g., see TCGA Research Network et al. (2012, 2014);
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Verhaak et al. (2010)). These have revealed striking molecular heterogeneity within each

classical type of cancer, which is often clinically relevant. However, restricting an analysis

to a particular type of cancer sacrifices power to detect important genomic changes that are

present across more than one cancer type. In 2013 TCGA began the Pan-Cancer Analysis

Project, motivated by the observation that “cancers of disparate organs reveal many shared

features, and, conversely, cancers from the same organ are often quite distinct” (Weinstein

et al., 2013). Subsequently, several pan-cancer studies have identified important shared

molecular alterations for somatic mutations (Kandoth et al., 2013), copy number (Zack

et al., 2013), mRNA (Hoadley et al., 2014), and protein abundance (Akbani et al., 2014).

However, a multi-omics analysis found that pan-cancer molecular heterogeneity is largely

dominated by cell-of-origin and other factors that define the classical cancer types (Hoadley

et al., 2018).

In this study we do not focus on baseline molecular differences between the cancer types.

Rather, we focus on whether patterns of variability within each cancer type are shared

across cancer types, i.e., whether multi-omic molecular profiles that drive heterogeneity

in one type of cancer also drive heterogeneity in other cancers. Systematic investigations

of heterogeneity in a pan-omics and pan-cancer context are presently limited by a lack

of principled and computationally feasible statistical approaches for the comprehensive

analysis of such data. In particular, the data take the form of bidimensionally linked

matrices, i.e., multiple large matrices that may share row sets (here, defined by the omics

platforms) or column sets (here, defined by the cancer types); this is illustrated in Figure 1

and the formal framework is described in Section 2.

In this article we propose a flexible approach to the simultaneous factorization and de-

composition of variation across bidimensionally linked matrices, BIDIFAC+. This decom-

poses variation into a series of low-rank components that may be shared across any number
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of row sets (e.g., omics platforms) or column sets (e.g., cancer types). Our approach builds

on a growing literature for the factorization and decomposition of linked matrices, which

we review in Section 3. Crucially, previous methods have primarily focused on multiple

matrices that are linked in one dimension (rows or columns) only.

Figure 1: Bidimensional integration of pan-omics pan-cancer data.
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2 Formal framework and notation

Here we introduce our framework and notation for pan-omics pan-cancer data. Let Xij :

Mi ×Nj denote the data matrix for omics data source i and sample set (i.e., cancer type)

j for j = 1, . . . , J and i = 1, . . . , I. Columns of Xij represent samples, and rows represent

variables (e.g., genes, miRNAs, proteins). The sample sets of size N = [N1, . . . , NJ ] are

consistent across each omics source, and the features measured for each omics source M =

[M1, . . . ,MI ] are consistent across sample sets. As illustrated in Figure 1, the collection

of available data can be represented as a single data matrix X•• : M × N where M =

M1 + . . . + MI and N = N1 + . . . + NJ , by horizontally and vertically concatenating its

constituent blocks:

X•• =


X11 X12 . . . X1J

...
...

...
...

XI1 XI2 . . . XIJ

 where Xij are Mi ×Nj. (1)

Similarly, Xi• defines the concatenation of omics source i across cancer types andX•j defines

the concatenation of cancer type j across omics sources:

Xi• = [Xi1 . . . XiJ ] , X•j =
[
X′

1j . . . X′
Ij

]′
.

The notation Xij[•, n] defines the n’th column of matrix ij, Xij[m, •] defines the m’th row,

and Xij[m,n] defines the entry in row m and column n. In our context, the entries are all

quantitative, continuous measurements; missing data are addressed in Section 9.

We will investigate shared or unique patterns of systematic variability (i.e., hetero-

geneity) among the constituent data blocks. We are not interested in baseline differences

between the different omics platforms or sample sets, and so after routine preprocessing

the data will be centered so that the mean of the entries within each data block, Xij, is
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0. Moreover, to resolve the disparate scale of the data blocks, each block will be scaled to

have comparable variability as described in Section 6.1.

In what follows, ||A||F denotes the Frobenius norm for any given matrix, so that ||A||2F
is the sum of squared entries in A. The operator ||A||∗ denotes the nuclear norm of A,

which is given by the sum of the singular values in A; that is, if A : M × N has ordered

singular values D[1, 1],D[2, 2], . . ., then ||A||∗ =
∑min(M,N)

r=1 D[r, r].

3 Existing integrative factorization methods

There is now an extensive literature on the integrative factorization and decomposition

of multiple linked datasets that share a common dimension. Much of this methodol-

ogy is motivated by multi-omics integration, i.e., vertical integration of multiple matri-

ces {X11,X21, . . . ,XM1} with shared columns in the setting of Section 2. For example, the

Joint and Individual Variation Explained (JIVE) method (Lock et al., 2013; O’Connell and

Lock, 2016) decomposes variation into joint components that are shared among multiple

omics platforms and individual components that only explain substantial variability in one

platform. This distinction simplifies interpretation, and also improves accuracy in recov-

ering underlying signals. Accuracy improves because structured individual variation can

interfere with finding important joint signal, just as joint structure can obscure important

signal that is individual to a data source. The factorized JIVE decomposition is

Xi1 = UiV
T +U∗

iV
T
i + Ei for i = 1, . . . , I. (2)

Joint structure is represented by the common score matrix V : N1 × R, which summarize

patterns in the samples that explain variability across multiple omics platforms. The

loading matrices Ui : Mi × R indicate how these joint scores are expressed in the rows
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(variables) of platform i. The score matrices Vi : N1 × Ri summarize sample patterns

specific to platform i, with loadings U∗
i . Model (2) can be equivalently represented as a

sum of low-rank matrices

X•1 = S(0)
• +

I∑
i=1

S(i)
• + E• (3)

where S(0)
• = U•VT is of rank R and S(k)

• = [S
(i)′

1 . . . S
(i)′

I ]′ is the matrix of rank Rk given

by the individual structure for platform k and zeros elsewhere:

S
(i)
i′ =

0Mi′×N if i′ ̸= i

U∗
i′Vi if i′ = i.

Several other methods result in a factorized decomposition similar to that in (2) and (3),

including approaches that allow for different distributional assumptions on the constituent

matrices (Li et al., 2018; Zhu et al., 2019), non-negative factorization (Yang and Michailidis,

2016), and the incorporation of covariates (Li and Jung, 2017). The Structural Learning

and Integrative Decomposition (SLIDE) method (Gaynanova and Li, 2019) allows for a

more flexible decomposition in which some components are only partially shared across a

subset of the constituent data matrices. SLIDE extends model (3) to the more general

decomposition

X•1 =
K∑
k=1

S(k)
• + E• (4)

where S(k)
• = [S

(k)′

1 . . . S
(k)′

I ]′ is a low-rank matrix with non-zero values for some subset of

the sources that is identified by a binary matrix R : I ×K: and

S
(k)
i =

0Mi×N if R[i, k] = 0

U
(k)
i V(k)T if R[i, k] = 1
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Here, V(k) gives scores that explain variability for only those patterns for the omics sources

identified by R[•, k].

The BIDIFAC approach (Park and Lock, 2019) is designed for the decomposition of

bidimensionally linked matrices as in (1). Its low-rank factorization can be viewed as an

extension of that for JIVE, decomposing variation into structure that is shared globally

(G), across rows (Row), across columns (Col), or individual to the constituent matrices

(Ind). Following (3) for JIVE and (4) for SLIDE, its full decomposition can be expressed

as

X•• = S(G)
•• +

I∑
i=1

S(i,Row)
•• +

J∑
j=1

S(j,Col)
•• +

I∑
i=1

J∑
j=1

S(i,j,Ind)
•• + E•• (5)

where S
(G)
ij = U

(G)
i V

(G)T
j ,

S
(i,Row)
i′j′ =

0Mi×Nj
if i′ ̸= i

U
(i,Row)
i V

(i,Row)T
j if i′ = i

, S
(j,Col)
i′j′ =

0Mi×Nj
if j′ ̸= j

U
(j,Col)
i V

(j,Col)T
j if j′ = j

,

and

S
(i,j,Ind)
i′j′ =

0Mi×Nj
if i′ ̸= i or j′ ̸= j

U
(i,j,Ind)
i V

(i,j,Ind)T
j if i′ = i and j′ = j

.

4 Proposed model

We consider a flexible factorization of bidimensionally linked data that combines aspects

of the BIDIFAC and SLIDE models. Our full decomposition can be expressed as

X•• =
K∑
k=1

S(k)
•• + E••, (6)
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where

S(k)
•• =


S
(k)
11 S

(k)
12 . . . S

(k)
1J

...
...

...
...

S
(k)
I1 S

(k)
I2 . . . S

(k)
IJ


and the presence of each S

(k)
ij is determined by a binary matrix of row indicators R : I ×K

and column indicators C : J ×K:

S
(k)
ij =

0Mi×Nj
if R[i, k] = 0 or C[j, k] = 0

U
(k)
i V

(k)T
j if R[i, k] = 1 and C[j, k] = 1

.

Each S(k)
•• gives a low-rank module that explains variability within the submatrix defined by

the omics platforms identified by R[•, k] and the cancer types identified by C[•, k]. There

are in total (2I −1)(2J −1) such submatrices, so by default we set K = (2I −1)(2J −1) and

let R and C enumerate all possible modules (see Appendix B). The SLIDE decomposition

(4) is a special case when J = 1 or I = 1 (i.e., unidimensional integration); the BIDIFAC

model (5) is a special case where each column of R and C contains either entirely 1’s (i.e.,

all rows or columns included) or just one 1 (i.e., just one row set or column set included).

The matrix E•• is an error matrix, whose entries are assumed to be sub-Gaussian with mean

0 and variance 1.

Let the rank of each module be rank(S(k)
•• ) = Rk, so that the dimensions of the non-zero

components of the factorization are U
(k)
i : Mi×Rk and V

(k)
j : Nj×Rk. The r’th component

of the k’th module gives a (potentially multi-omic) molecular profile {U(k)
i [•, r] : R[i, k] = 1}

that explains variability within those cancer types defined by C[·, k] with corresponding

sample scores {V(k)
j [r, •] : C[i, k] = 1}.
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5 Objective function

To estimate model (6), we minimize a least squares criterion with a structured nuclear

norm penalty:

argmin
{S(k)

•• }Kk=1

1

2
||X•• −

K∑
k=1

S(k)
•• ||2F +

K∑
k=1

λk||S(k)
•• ||∗ (7)

subject to S
(k)
ij = 0Mi×Nj

if R[i, k] = 0 or C[j, k] = 0. The choice of the penalty parameters

{λk}Kk=1 is critical, and must satisfy the conditions of Proposition 8 to allow for non-zero

estimation of each module.

Proposition 1. Under objective (7), the following are necessary to allow for each Ŝ(k)
•• to

be non-zero

1. If for k′ ̸= k the rows and columns of module k′ are contained within those for module

k, R[i, k]−R[i, k′] ≥ 0 ∀ i and C[j, k]−C[j, k′] ≥ 0 ∀ j, then λk > λk′.

2. If Ik ⊂ {1, . . . , k − 1, k + 1, . . . , K} is any subset of modules that together cover the

rows and columns of module k,
∑

j∈Ik R[•, j] = r ·R[•, k] and
∑

j∈Ik C[•, j] = c ·C[•, k]

for positive integers r and c, then λk <
∑

j∈Ik λj.

We determine the λk’s by random matrix theory, motivated by two well-known results

for a single matrix that we repeat here in Propositions 2 and 3.

Proposition 2. (Mazumder et al., 2010) Let UDVT be the SVD of a matrix X. The

approximation A that minimizes

1

2
||X−A||2F + λ||A||∗ (8)

is A = UD̃VT , where D̃ is diagonal with entries D̃[r, r] = max(D[r, r]− λ, 0).

10



Proposition 3. (Rudelson and Vershynin, 2010) If E : M ×N is a matrix of independent

entries with mean 0 and variance σ2, then σ(
√
M +

√
N) provides a tight upper bound on

the largest singular value (D[1, 1]) of E.

Fixing λ = σ(
√
M +

√
N) is a reasonable choice for the matrix approximation task

in (8), because it keeps only those components r whose signal is greater than that expected

for independent error by Proposition 3: D[r, r] > σ(
√
M +

√
N) (Shabalin and Nobel,

2013). In our context σ = 1, and thus we set λk =
√

R[•, k] ·M +
√

C[•, k] ·N, where

R[•, k] ·M×C[•, k] ·N gives the dimensions of the non-zero sub-matrix for S(k)
•• :

R[•, k] ·M =
I∑

i=1

MiR[i, k] and C[•, k] ·N =
J∑

j=1

NjC[j, k].

Our choice of λk is motivated to distinguish signal from noise in module S(k)
•• , conditional

on the other modules. Moreover, it is guaranteed to satisfy the necessary conditions in

Proposition 8, which we establish in Proposition 4.

Proposition 4. Setting λk =
√

R[•, k] ·M +
√

C[•, k] ·N in (7) satisfies the necessary

conditions of Proposition 8.

A similarly motivated choice of penalty weights is used in the BIDIFAC method, which

solves an equivalent objective under the restricted scenario where the columns of R and

C are fixed and contain either entirely 1’s (i.e., all rows or columns included) or just one

1 (i.e., just one row set or column set included). Thus, we call our more flexible approach

BIDIFAC+.

It is often infeasible to explicitly consider each of the K = (2I − 1)(2J − 1) possible

modules in (7), and the solution is often sparse, with Ŝ(k)
•• = 0 for several k. Thus, in

practice we also optimize over the row and column sets R and C for some smaller number
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of modules K̃ ≪ K:

argmin
R,C,{S(k)

•• }Kk=1

1

2
||X•• −

K̃∑
k=1

S(k)
•• ||2F +

K∑
k=1

(√
M ·R[•, k] +

√
N ·C[•, k]

)
||S(k)

•• ||∗. (9)

Note that if K̃ is greater than the number of non-zero modules, then the solution to (9)

is equivalent to the solution to (7) in which R and C are fixed and enumerate all possible

modules. If K̃ is not greater than the number of non-zero modules, then the solution to

(9) can still be informative as the set of K̃ modules that together give the best structural

approximation via (7).

6 Estimation

6.1 Scaling

We center each dataset Xij to have mean 0, and scale each dataset to have residual variance

var(Eij) of approximately 1. Such scaling requires an estimate of the residual variance for

each dataset. By default we use the median absolute deviation estimator σ̂2
MAD of Gavish

and Donoho (2017), which is motivated by random-matrix theory under the assumption

that Xij is composed of low-rank structure and mean 0 independent noise of variance σ2.

We estimate σ̂2
MAD for the unscaled data Xunscaled

ij , and set Xij = Xunscaled
ij /σ̂MAD. An

alternative approach is to scale each dataset to have overall variance 1, var(Xij)=1, which

is more conservative because var(E••) ≤ var(Xij); thus, this approach results in relatively

larger λk in the objective function and leads to sparser overall ranks.
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6.2 Optimization algorithm

We estimate across all modules k = 1, . . . , K simultaneously by iteratively optimizing the

objectives in Section 5. First assume the row and column inclusions for each module,

defined by R and C, are fixed as in objective (7). Then, to estimate S(k)
•• given the other

modules {S(k′)
•• }k′ ̸=k, we can apply the soft-singular value estimator in Proposition 2 to the

residual matrix

X•• −
∑
k′ ̸=k

S(k′)
••

on the submatrix defined by R[•, k] and C[•, k]. In this way, we iteratively optimize (7)

over the K modules {S(k)
•• }Kk=1 until convergence. If the row and column inclusions R and

C are not predetermined, then we incorporate additional sub-steps to estimate the non-

zero submatrix defined by R[•, k] and C[•, k] for each module to optimize 9. We use a

dual forward-selection procedure to iteratively determine the optimal row-set R[•, k] with

columns C[•, k] fixed, and the column-set C[•, k] with rows R[•, k] fixed, until convergence

prior to estimating each S(k)
•• . Further details and pseudocode for the algorithm are provided

in Appendix A.

7 Identifiability

Here we consider the identifiability of the decomposition in (4) under the objective (7). To

account for permutation invariance of the K modules, throughout this section we assume

that R and C are fixed and that they enumerate all of the K = (2I − 1)(2J − 1) possible

modules. Without loss of generality, we fix R and C as in Appendix B. Then, let SX̂ be
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the set of possible decompositions that yield a given approximation X̂••:

SX̂ =

{
{S(k)

•• }Kk=1 | X̂•• =
K∑
k=1

S(k)
••

}
.

If either I > 1 or J > 1 then the cardinality of SX̂ is infinite, i.e., there are an infinite

number of ways to decompose X̂••. Thus, model (4) is clearly not identifiable in general,

even in the no-noise case E•• = 0. However, optimizing the structured nuclear norm penalty

in (7) may uniquely identify the decomposition; let fpen(·) give this penalty:

fpen({S(k)
•• }Kk=1) =

K∑
k=1

(√
R[•, k] ·M+

√
C[•, k] ·N

)
||S(k)

•• ||∗.

Proposition 5, gives an equivalence of the left and right singular vectors for any two

decompositions that minimize fpen(·).

Proposition 5. Take two decompositions {Ŝ(k)
•• }Kk=1 ∈ SX̂ and {S̃(k)

•• }Kk=1 ∈ SX̂, and assume

that both minimize the structured nuclear norm penalty:

fpen({Ŝ(k)
•• }Kk=1) = fpen

(
{S̃(k)

•• }Kk=1

)
= min

SX̂
fpen({S(k)

•• }Kk=1).

Then, Ŝ(k)
•• = U(k)

• D̂V(k)T
• and Ŝ(k)

•• = U(k)
• D̃(k)V(k)T

• where U(k)
• : M×Rk and V(k)

• : N×Rk

have orthonormal columns, and D̂(k) and D̃(k) are diagonal.

The proof of Proposition 5 uses two novel lemmas (see Appendix C): one establishing

that Ŝ(k)
•• and S̃(k)

•• must be additive in the nuclear norm, ||Ŝ(k)
•• + S̃(k)

•• ||∗ = ||Ŝ(k)
•• ||∗+ ||S̃(k)

•• ||∗,

and a general result establishing that any two matrices that are additive in the nuclear

norm must have the equivalence in Proposition 5.

Proposition 5 implies that left or right singular vectors of Ŝ(k)
•• (D̂(k)[r, r] > 0) are either

shared with S̃(k)
•• (if D̃(k)[r, r] > 0) or orthogonal to S̃(k)

•• (if D̃(k)[r, r] = 0). For identifiability,

one must establish that D̂(k)[r, r] = D̃(k)[r, r] for all k and r. Theorem 2 gives sufficient

conditions for identifiability of the decomposition.
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Theorem 1. Consider {Ŝ(k)
•• }Kk=1 ∈ SX̂ and let U(k)

• D̂(k)V(k)T
• give the SVD of Ŝ(k)

•• for

k = 1, . . . , K. The following three properties uniquely identify {Ŝ(k)
•• }Kk=1.

1. {Ŝ(k)
•• }Kk=1 minimizes fpen(·) over SX̂,

2. {Û(k)
i [•, r] : R[i, k] = 1 and D̂(k)[r, r] > 0} are linearly independent for i = 1, . . . I,

3. {V̂(k)
j [•, r] : C[j, k] = 1 and D̂(k)[r, r] > 0} are linearly independent for j = 1, . . . , J .

The linear independence conditions (2. and 3.) are in general not sufficient for iden-

tifiability, and several related integrative factorization methods achieve identifiability via

stronger orthogonality conditions across the terms of the decomposition (Lock et al., 2013;

Gaynanova and Li, 2019). Theorem 2 implies that orthogonality is not necessary under

the penalty fpen(·). Conditions 2. and 3. are straightforward to verify for any {Ŝ(k)
•• }Kk=1,

and they will generally hold whenever the ranks in the estimated factorization are small

relative to the dimensions {Mi}Ii=1 and {Nj}Jj=1. Moreover, the conditions of Theorem 2

are only sufficient for identifiability; there may be cases for which the minimizer of fpen(·)

is unique and the terms of its decomposition are not linearly independent.

8 Bayesian interpretation

Express the BIDIFAC+ model (6) in factorized form

X•• =
K∑
k=1

U(k)
• V(k)T

• + E•• (10)

where

U(k)′
• = [U

(k)′

1 · · ·U(k)′

I ]′, with U
(k)
i = M1 ×Rk and U

(k)
i = 0M1×Rk

if R[i, k] = 1 (11)
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for all i and k, and

V(k)
• = [V

(k)
1 · · ·V(k)

J ], with V
(k)
i = Nj ×Rk and V

(k)
i = 0Nj×Rk

if C[j, k] = 1 (12)

for all j and k. The structured nuclear norm objective (7) can also be represented by L2

penalties on the factorization componentsU(k)
• andV(k)

• . We formally state this equivalence

in Proposition 6, which extends analogous results for a single matrix (Mazumder et al.,

2010) and for the BIDIFAC framework (Park and Lock, 2019).

Proposition 6. Fix R and C. Let {Û(k)
• }Kk=1 and {V̂(k)

• }Kk=1 minimize

||X•• −
K∑
k=1

U(k)
• ,V(k)

• ||2F +
K∑
k=1

λk

(
||U(k)

• ||2F + ||V(k)
• ||2F

)
(13)

with the restrictions (11) and (12). Then, {Ŝ(k)
•• }Kk=1 solves (7), where Ŝ(k)

•• = Û(k)
• V̂(k)T

• for

k = 1, . . . , K.

From (13), it is apparent that our objective gives the mode of a Bayesian posterior with

normal priors on the errors and the factorization components, as stated in Proposition 7.

Proposition 7. Let the entries of E•• be independent Normal(0, 1), the entries of U
(k)
i be in-

dependent Normal(0, τ 2) if R[i, k] = 1, and the entries of V
(k)
j be independent Normal(0, τ 2k )

if C[j, k] = 1, where τ 2k = 1/λk. Then, (13) is proportional to the joint likelihood

p
(
X••, {U(k)

• }Kk=1, {V(k)
• }Kk=1 | R,C

)
.

9 Missing data imputation

The probabilistic formulation of the objective described in Section 8 motivates a modified

Expectation-Maximization (EM)-algorithm approach to impute missing data. LetM index
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observations in the full datasetX•• that are unobserved: M = {(m,n) : X••[m,n] is missing}.

Our iterative algorithm for missing data imputation proceeds as follows:

1. Initialize X̂•• by

X̂••[m,n] =

X••[m,n] if (m,n) /∈ M

0 if (m,n) ∈ M

2. M-step: Estimate {Ŝ(k)
•• }Kk=1 by optimizing (7) for X̂••.

3. E-step: Update X̂•• by X̂••[m,n] =
∑K

k=1 Ŝ
(k)
•• [m,n].

4. Repeat steps 2. and 3. until convergence.

Analogous approaches to imputation for other low-rank factorization techniques have

been proposed (Kurucz et al., 2007; O’Connell and Lock, 2017; Park and Lock, 2019).

Crucially for our context, the method can be used to impute data that may be missing

from an entire column or an entire row of each Xij.

10 Application to TCGA data

10.1 Data acquisition and preprocessing

Our data were curated for the TCGA Pan-Cancer Project and were used for the pan-cancer

clustering analysis described in Hoadley et al. (2018). We used data from four (I = 4) omics

sources: (1) batch corrected RNA-Seq data capturing (mRNA) expression for 20531 genes,

(2) batch corrected miRNA-Seq data capturing expression for 743 miRNAs, (3) between-

platform normalized data from the Illumina 27K and 450K platforms capturing DNA

methylation levels for 22601 CpG sites, and (4) batch-corrected reverse-phase protein array
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data capturing abundance for 198 proteins. These data are available for download at https:

//gdc.cancer.gov/about-data/publications/PanCan-CellOfOrigin [accessed 11/19/2019].

We consider data for N = 6, 973 tumor samples from different individuals with all four

omics sources available; these tumor samples represent J = 29 different cancer types, listed

in Table 1.

Table 1: TCGA acronyms for the 29 different cancer types considered.

Acronym Cancer type Acronym Cancer type

ACC Adrenocortical carcinoma BLCA Bladder urothelial carcinoma

BRCA Breast invasive carcinoma CESC Cervical carcinoma

CHOL Cholangiocarcinoma CORE Colorectal adenocarcinoma

DLBC Diffuse large B-cell lymphoma ESCA Esophageal carcinoma

HNSC Head/neck squamous cell KICH Kidney chromophobe

KIRC Kidney renal clear cell KIRP Kidney renal papillary cell

LGG Brain lower grade glioma LIHC Liver hepatocellular carcinoma

LUAD Lung adenocarcinoma LUSC Lung squamous cell carcinoma

MESO Mesothelioma OV Ovarian cancer

PAAD Pancreatic adenocarcinoma PCPG Pheochromocytoma and para-

ganglioma

PRAD Prostate adenocarcinoma SARC Sarcoma

SKCM Skin cutaneous melanoma STAD Stomach adenocarcinoma

TGCT Testicular germ cell tumors THCA Thyroid carcinoma

THYM Thymoma UCEC Uterine corpus endometrial

carcinoma

UCS Uterine carcinosarcoma
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Table 2: Cancer types and sources for the first 15 modules, ordered by variation explained.

Module Cancer types Omics sources

1 All cancers mRNA miRNA Meth Protein

2 All cancers miRNA

3 BLCA BRCA CESC CHOL CORE DLBC ESCA

HNSC LIHC LUAD LUSC OV PAAD PRAD

SKCM STAD TGCT UCEC UCS

Meth

4 ACC BLCA CHOL CORE DLBC ESCA HNSC

KICH KIRC KIRP LGG LIHC LUAD LUSC

MESO PAAD PCPG SARC SKCM STAD THCA

THYM

mRNA Meth

5 All cancers mRNA

6 BRCA mRNA miRNA Meth Protein

7 LGG mRNA miRNA Protein

8 All cancers *but* LGG Protein

9 THCA mRNA miRNA Protein

10 All cancers *but* LGG and TGCT miRNA

11 CHOL KIRC KIRP LIHC mRNA miRNA Meth Protein

12 LGG Meth

13 BLCA CESC CORE ESCA HNSC LUSC SARC

STAD

mRNA miRNA Meth Protein

14 KICH KIRC KIRP mRNA miRNA Protein

15 BLCA BRCA CESC CHOL ESCA HNSC LUAD

LUSC PAAD PRAD SKCM STAD TGCT UCEC

UCS

mRNA miRNA

19



We log-transformed the counts for the RNA-Seq and miRNA-Seq sources. To remove

baseline differences between cancer types, we center each data source to have mean 0 across

all rows for each cancer type:

mean(Xij[m, •]) = 0 for all i, j,m.

We filter to the 1000 genes and the 1000 methylation CpG probes that have the high-

est standard deviation after centering, leaving M1 = 1000 genes, M2 = 743 miRNAs,

M3 = 1000 CpGs, and M4 = 198 proteins. Lastly, to account for differences in scale, we

standardize so that each variable has standard deviation 1:

SD(Xi•[m, •]) = 1 for all i,m.

10.2 Factorization results

We apply the BIDIFAC+ method to the complete-case data with I = 4 omics sources

and J = 29 cancer types. We simultaneously estimate a maximum of K = 50 low-rank

modules; all modules are non-zero, but the variation explained by the smaller modules

are negligible. Figure 10.2 gives the total variance explained by each module, ||Ŝ(k)
•• ||2F ,

for k = 1, . . . , 50 in decreasing order. The top 15 modules ordered by total variance

explained are given in Table 2, and all 50 modules are given in the supplemental spreadsheet

at http://www.ericfrazerlock.com/BIDIFAC_modules.xlsx. The first module explains

global variation, with all cancer types and all omics sources included. Other modules that

explain substantial variability across all or almost all cancer types are specific to each

omics source: miRNA (Module 2), methylation (Module 3), gene expression (Module 5)

and Protein (Module 8).

The module that explains the fourth most variation (Module 4) identifies structure in the

genes and DNA methylation that explains variation in 22 of the 29 cancer types; we focus
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Figure 2: Total sum of squared entries in each of the 50 modules.

on this module as an illustrative example. The cancer types *not* included in Module 4

are BRCA (breast), CESC (cervical), OV (ovarian), PRAD (prostate), TGCT (testicular),

UCEC (uterine endometrial), and UCS (uterine). Interestingly, all tumor types that were

excluded were cancers specific to either males or females (or heavily skewed in BRCA); while

cancer types included have both sexes. Figure 3 shows that Module 4 is indeed dominated

by a single component that corresponds to molecular differences between the sexes. The

gene loadings for this component are negligible except for those on the Y chromosome and

two genes on the X chromosome that are responsible for X-inactivation in females: XIST

and TSIX ; the methylation loadings are negligible except for those in the X chromosome.

These results are an intuitive illustration of the method, revealing a multi-omic molecular
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signal that explains heterogeneity in some cancer types, but not all cancer types (only those

that have both males and females).

The module that explains the sixth most variation (Module 6) identifies structure across

all four omics sources that explains variation in the breast cancer (BRCA) samples only.

Figure 4 shows that the first two components in this module are driven primarily by distinc-

tions between the PAM50 molecular subtypes for BRCA (TCGA Research Network et al.,

2012). Thus, our analysis suggests that molecular signals that distinguish these subtypes

are present across all four omics sources, but that these signals do not explain substantial

variation within any other type of cancer considered.

Several other modules explain variability in just one type of type of cancer, including

LGG (Module 7: mRNA, miRNA and Protein), THCA (Module 9), UCEC (Module 16),

and PRAD (Modules 18 and 19). Module 12, which is specific to LGG methylation,

reveals distinct clustering by mutation status of the IDH genes (see Figure 10.2). IDH

mutations have been shown to lead to a distinct CpG-island hyper-methylated phenotype

(Noushmehr et al., 2010). Other modules explain variability in multiple cancer types that

share similarities regarding their origin or histology. For example, Module 14 explains

variability within the three kidney cancers (KICH, KIRC, and KIRP), and digestive and

gastrointestinal cancers (CORE, ESCA, PAAD, STAD) are represented in Modules 25

(methylation) and 28 (mRNA).

10.3 Missing data imputation

To assess the accuracy of missing data imputation using BIDIFAC+, we hold-out observed

entries, rows, and columns of each dataset in the pan-omics pan-cancer and impute them

using the approach in Section 9. We randomly set 100 columns (samples) to missing for

each of the 4 omic platforms, and we randomly set 100 rows (features) to missing for
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Figure 3: Sample scores (top), scree plot (bottom left), and loadings on genes and methy-

lation CpGs (bottom right) for the first component of Module 4. This includes 22 cancer

types with samples from both sexes, and the modules is dominated by molecular signals

that distinguish males from females.
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Figure 4: Sample scores (top), scree plot (bottom left), and loadings for all four omics

platforms for Module 6. This module includes only breast (BRCA) tumor samples, and it

is dominated by molecular signals that distinguish the PAM50 subtypes.

each of the 29 cancer types. We then randomly set 5000 of the values remaining in the

joint matrix X•• to missing. We impute missing values using BIDIFAC+ as described in
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Figure 5: Scores for the first two components of Module 12 (LGG; methylation), colored

by IDH mutation status.

Section 9, and for comparison we use an analogous approach to imputation using four

other low-rank factorizations: (1) soft-threshold (nuclear norm) SVD of the joint matrix

X••, (2) soft-threshold SVD of each matrix Xij separately, (3) hard-threshold SVD (SVD

approximation using the first R singular values) of X••, (4) hard-threshold SVD of each

Xij separately. For the soft-thresholding SVD methods, the penalty factor is estimated by

random matrix theory as in Section 5. For the hard-thresholding methods the ranks are

determined by cross-validation by minimizing imputation error on an additional held-out
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cohort of the same size.

We consider the imputation error under the different methods, broken down by (1)

observed values, (2) values that are missing but have the rest of their row and column

present (entrywise missing), (3) values that are missing their entire row, (4) values that

are missing their entire column, and (5) values that are missing both their row and their

column. For a given set of values M, we compute the relative squared error as

RSE =

∑
(m,n)∈M(X••[m,n]− X̂••[m,n])2∑

(m,n)∈M X••[m,n]2
,

where X̂•• is the structural approximation resulting from the given method. Table 3 gives

the RSE for each method and for each missing condition. Imputation by BIDIFAC+

outperforms the other methods for each type of missingness, illustrating the advantages of

decomposing joint and individual structures. The hard-thresholding approaches have much

less error for the observed data than for the missing data, due to over-fitting of the signal.

Table 3: Imputation RSE under different approaches and different types of missingness.

Method Observed Entrywise Row Column Both

BIDIFAC+ 0.510 0.558 0.670 0.807 0.881

Soft-SVD (joint) 0.531 0.621 0.678 0.834 0.894

Soft-SVD (separate) 0.564 0.610 1.000 1.000 1.000

Hard-SVD (joint) 0.431 0.559 0.829 0.908 1.200

Hard-SVD (separate) 0.344 0.581 1.000 1.000 1.000
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11 Simulation studies

11.1 Vertically linked simulations

We conduct a simulation study to assess the accuracy of the BIDIFAC+ decomposition in

the context of vertical integration, where there is a single shared column set (J = 1). For

all scenarios, we simulate data according to model (4) wherein the entries of the residual

noise E•• are generated independently from a Normal(0, 1) distribution and the entries of

each U
(k)
i and V(k) are generated independently from a Normal(0, σ2) distribution.

We first consider a scenario with I = 3 matrices, each of dimension 100×100 (N = 100

and M1 = M2 = M3 = 100), with low-rank modules that are shared jointly, shared across

each pair of matrices, and individual to each matrix:

R =


1 1 1 0 1 0 0

1 1 0 1 0 1 0

1 0 1 1 0 0 1

 . (14)

We consider a “low-rank” and a “high-rank” condition across three different signal-to-noise

levels. For the low-rank condition, each of the seven modules has rank R = 1; for the

high-rank condition, each module has rank R = 5. The variance of the factorized signal

component, σ2 is set to be
√

1/2, 1, or
√
10, so that the signal-to-noise ratio (s2n) of each

components is 1/2, 1, or 10, respectively.

For each condition, we apply four approaches to uncover the underlying decomposition:

1. BIDIFAC+, with R given by (14), as in the true generative model,

2. BIDIFAC+, with R estimated,

3. SLIDE, with R and the true ranks of each module (R = 1 or R = 5) provided,
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4. SLIDE, withR and the ranks of each module estimated via the default cross-validation

scheme.

We use SLIDE as the basis of comparison with BIDIFAC+, because it is the only other

method that is designed to recover each term in the decomposition and it generally outper-

forms other vertically linked decomposition methods (Gaynanova and Li, 2019; Park and

Lock, 2019). For each case we compute the mean relative squared error (RSE) in recovering

each module of the decomposition:

RSE =
1

K

K∑
k=1

||S(k)
•• − Ŝ(k)

•• ||2F
||S(k)

•• ||2F
. (15)

The mean RSE for each condition and under each approach is shown in Table 4, broken

down by the global module, pairwise modules, and individual modules. BIDIFAC+ gener-

ally outperforms or performs similarly to SLIDE, even when the true ranks are used for the

SLIDE implementation (the ranks are never fixed for BIDIFAC+). An exception is when

the ranks and s2n ratio are small (rank=1, s2n=0.5), where BIDIFAC+ tends to over-

shrink the signal. BIDIFAC+ performs particularly well relative to SLIDE when the rank

is large and s2n is high. One likely reason for this improvement is that the SLIDE model

necessarily restricts the factorized components U
(k)
i and V(k) to be mutually orthogonal,

whereas BIDIFAC+ has no such constraint. This restriction can be limiting when decom-

posing generated signals that are independent but not orthogonal Park and Lock (2019).

Moreover, when estimating the ranks the SLIDE model can drastically underperform rel-

ative to using the true ranks. The results for BIDIFAC+ when fixing the true modules

R vs. estimating R are nearly identical; because all possible modules are present for this

scenario, the two approaches are very similar despite subtle differences in the algorithms.

We consider another scenario with a larger number of matrices (I = 10), each of dimen-

sion 100 × 100 (N = 100, M1 = · · · = M10 = 100) and sparsely distributed modules. We
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generate 10 low rank modules out of 210 − 1 = 1023 possibilities, that are present on (1)

X11 only, (2) X11 and X21, (3) X11, X21, and X31, etc. We again consider low-rank (R = 1)

and high-rank (R = 5) scenarios for all modules, and three signal-to-noise levels 0.5, 1, and

10. The resulting mean RSE (15) over all modules, for each approach, is shown in Table 5.

Here, BIDIFAC+ with fixed true R generally performs better than estimating R; however,

these gains are modest for most scenarios, suggesting the BIDIFAC+ generally does a good

job of identifying which of the 1023 possible modules are non-zero.

11.2 Application-motivated simulation

Here we assess the recovery of the underlying structure and the accuracy of the decom-

position into shared components for a bidimensionally linked scenario that reflects our

motivating application in Section 10. We generate data by taking the estimated decompo-

sition from Section 10.2 and adding independent noise to it. That is, we simulate

X̃•• =
50∑
k=1

αŜ(k)
•• + Ẽ••

where {Ŝ(k)
•• }Kk=1 is the estimated decomposition from Section 10.2, the entries of Ẽ•• are

independent Normal(0, 1), and α > 0 is a parameter that controls the total signal-to-noise

ratio. We consider three total signal-to-noise ratios, defined by

s2n = var(
50∑
k=1

αŜ(k)
•• )/var(Ẽ) = var(

50∑
k=1

αŜ(k)
•• ),

s2n = 0.2, 0.5, and 5. The scenario with s2n = 0.5 corresponds most closely to the real

data, for which the ratio of the estimated signal variance over the residual variance is 0.552.

For each scenario, we estimate the underlying decomposition using BIDIFAC+ with the

true R and C fixed, and using BIDIFAC+ with estimated modules R̃ and C̃ and K̃ = 50.
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Table 4: Comparison of BIDFAC+ and SLIDE signal decomposition RSE (I = 3 sources).

BIDIFAC+ SLIDE

Scenario Structure True R Estimated R True ranks Estimated ranks

Global 0.130 0.130 0.120 0.120

Rank=1, s2n=0.5 Pairwise 0.157 0.156 0.103 0.103

Individual 0.197 0.197 0.118 0.118

Global 0.060 0.060 0.084 0.084

Rank=1, s2n=1 Pairwise 0.068 0.068 0.053 0.053

Individual 0.070 0.070 0.048 0.048

Global 0.010 0.010 0.035 3.65

Rank=1, s2n=10 Pairwise 0.005 0.005 0.027 1.00

Individual 0.008 0.008 0.037 0.689

Global 0.270 0.270 0.276 0.869

Rank=5, s2n=0.5 Pairwise 0.268 0.268 0.263 0.460

Individual 0.329 0.329 0.306 0.317

Global 0.123 0.123 0.232 1.320

Rank=5, s2n=1 Pairwise 0.121 0.121 0.189 0.674

Individual 0.148 0.148 0.241 0.485

Global 0.080 0.080 0.233 2.36

Rank=5, s2n=10 Pairwise 0.060 0.060 0.189 0.917

Individual 0.089 0.089 0.249 0.703
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Table 5: Comparison of BIDFAC+ and SLIDE signal decomposition RSE (I = 10 sources).

BIDIFAC+ SLIDE

Ranks s2n True R Estimated R True ranks Estimated ranks

1 0.5 0.150 0.150 0.116 0.116

1 1 0.076 0.078 0.105 0.105

1 10 0.032 0.025 0.060 0.060

5 0.5 0.297 0.320 0.402 0.685

5 1 0.177 0.189 0.324 0.603

5 10 0.167 0.245 0.347 0.347

In each case, we compute the RSE as follows

RSE =
1

50

50∑
k=1

||S̃(k)
•• − αŜ(k)

•• ||2F
||αS(k)

•• ||2F
.. (16)

When computing RSE, we permute the 50 modules so that R̃[•, k] = R[•, k] and C̃[•, k] =

C[•, k] wherever possible, and set S̃(k)
•• = 0 if R̃[•, k] ̸= R[•, k] and C̃[•, k] ̸= C[•, k]. We also

compute the relative overall signal recovery (ROSR) as

ROSR =
||
∑K

k=1 Ŝ
(k)
•• −

∑K
k=1 αŜ

(k)
•• ||2F

||
∑K

k=1 αS
(k)
•• ||2F

. (17)

The results are shown in Table 6, and demonstrate that the underlying decomposition

is recovered reasonablly well in most scenarios. However, the RSE for estimated modules is

often substantially more than the RSE using the true modules, as the row and column sets

defining the modules can be estimated incorrectly. Moreover, the overall signal recovery

error (ROSR) is generally substantially less than the mean error in recovering each module

(RSE), demonstrating how the decomposition can be estimated incorrectly even if the

overall signal is estimated with high accuracy.
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Table 6: Relative squared error of the decomposition (RSE) and relative overall signal

recovery (ROSR) using BIDIFAC+ with known modules (R and C) and estimated modules

(R̂ and Ĉ).

s2n RSE(R,C) RSE (R̃, C̃) ROSR (R,C) ROSR (R̃, C̃)

0.2 0.356 0.531 0.170 0.189

0.5 0.242 0.386 0.131 0.143

5 0.128 0.346 0.012 0.026

12 Discussion

The successful integration of multiple large sources of data is a pivotal challenge for many

modern analysis tasks. While several general approaches have been developed, they largely

do not apply to the context of bidimensionally linked matrices. BIDIFAC+ is a flexible

approach for dimension reduction and decomposition of shared structures among bidimen-

sionally linked matrices, which is competitive with alternative methods that integrate over

a single dimension (rows or columns). Here we have focused primarily on the accuracy

of the estimated decomposition and exploratory analysis of the results. BIDIFAC+ may

also be used for other tasks, such as missing data imputation or as a dimension reduction

step preceding statistical modeling (e.g., as in principal components regression). For these

other tasks it is desirable to model statistical uncertainty, and fully Bayesian extensions

that capture the full posterior distribution about the mode in Section 8 are potentially

very useful. Moreover, while we have explored the identifiability of the decomposition un-

der BIDFAC+, it is worthwhile to establish conditions that are both necessary and sufficient

for identifiability.

Our application to pan-omics pan-cancer data from TCGA revealed molecular patterns
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that explain variability across all or almost all types of cancer, both across omics platforms

and within each omics platform. However, it also revealed patterns several instances in

which patterns are specific to one or a small subset of cancers, and these often show

sharp distinctions of previously known molecular subtypes (e.g., for BRCA and LGG).

Interestingly, BRCA was the only tumor type that showed up with all four platforms in

a module. Together, they strongly separated the Basal-like molecular subtype from other

subtypes of breast cancer. This mirrors the analysis of individual data types in TCGA

Research Network et al. (2012). The LGG data also split by both histological groups

and mutation status based on BIDFAC+, even though both were not included in the

analysis. Module 7 included mRNA, miRNA, and protein and was predominantly driven

by co-deletion of 1p/19q which is predominantly observed in oligodendrogliomas and is

associated with better overall survival. This mirrors the previous TCGA work that showed

that the LGG could be predominately split by 1p/19q deletion, IHD1 status (Module 12,

for methylation) or TP53 mutation status (TCGA Research Network, 2015).

Availability

R code to perform BIDIFAC+ and to conduct the analyses described herein is available at

https://github.com/lockEF/bidifac.
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A Algorithmic details

A.1 Fixed modules

For modules with fixed row and column sets defined by R : I × K and C : J × K, the

iterative estimation algorithm proceeds as follows:

1. Initialize Ŝ(k)
•• = 0M×N for k = 1, . . . , K.

2. For k = 1, . . . , K:

(a) Compute the residual matrix X(k)
•• = X•• −

∑
k′ ̸=k Ŝ

(k′)
••

(b) Set X
(k)
ij = 0Mi×Nj

where R[i, k] = 0 or C[j, k] = 0

(c) Compute the SVD of X
(k)
ij , X

(k)
ij = U(k)

• D(k)V(k)
•

(d) Update Ŝ(k)
•• = U(k)

• D̂(k)V(k)
• where D̂[r, r] = max(D[r, r]−λk, 0) for r = 1, 2, . . .

.

3. Repeat step 2. until convergence of the objective function

||X•• −
K∑
k=1

Ŝ(k)
•• ||2F +

K∑
k=1

2
(√

M ·R[•, k] +
√
N ·C[•, k]

)
||S(k)

•• ||∗. (18)

Step 2(d) finds minimizes the objective (18) for Ŝ(k)
•• given {S(k′)

•• }k′ ̸=k, by Proposition 2 in

the main manuscript.

A.2 Undetermined modules

If the row and column sets defining the modules R : I×K and C : J×K are not predifined,

we update them via a forward selection search process within the algorithm. The iterative

estimation algorithm proceeds as follows:
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1. Initialize Ŝ(k)
•• = 0M×N for k = 1, . . . , K.

2. Initialize Ĉ[j, k] = 1 for j = 1, . . . , J .

3. For k = 1, . . . , K:

(a) Compute the residual matrix X(k)
•• = X•• −

∑
k′ ̸=k Ŝ

(k′)
••

(b) Update R̂[•, k] and Ĉ[•, k] as follows:

i. With Ĉ[•, k] fixed, update R̂[•, k] by forward selection, beginning with R̂[•, k] =

0 and iteratively adding rows i (R̂[i, k] = 1) to minimize the objective (18).

ii. With R̂[•, k] fixed, update Ĉ[•, k] by forward selection, beginning with R̂[•, k] =

0 and iteratively adding columns j (Ĉ[i, k] = 1) to minimize the objec-

tive (18).

iii. Repeat steps i. and ii. until convergence of the chosen row and column sets

Ĉ[•, k] and R̂[•, k].

(c) Set X
(k)
ij = 0Mi×Nj

where R̂[i, k] = 0 or Ĉ[j, k] = 0

(d) Compute the SVD of X
(k)
ij , X

(k)
ij = U(k)

• D(k)V(k)
•

(e) Update Ŝ(k)
•• = U(k)

• D̂(k)V(k)
• where D̂[r, r] = max(D[r, r]−λk, 0) for r = 1, 2, . . .

.

4. Repeat step 3. until convergence of the objective function.

The forward selection steps in 3(b) can be performed relatively efficiently by only com-

puting the singular values of the relevant submatrices of X(k)
•• , rather than the full SVD.
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A.3 Tempered regularization

In practice, we find that the convergence of the algorithm in (A.2) improves substantially if

the initial iterations use a high nuclear norm penalty that gradually decreases to the desired

level of penalization. Thus, in our implementation for the first iteration the penalties are set

to λ̃k = αλk for k = 1, . . . , K and some α > 1. The penalties then gradually decrease over

each subsequent iteration of the algorithm, before reaching the desired level of regularization

(α = 1).

B Module enumeration

As the default representation of model (6) in the main manuscript, set K = (2I−1)(2J −1)

and let R and C enumerate all possible modules as follows. For k = 1, . . . , K, let R[•, k]

be the I-digit binary representation for kmod (2I − 1) + 1, where mod gives the modulo

(remainder) operator. For k = 1, . . . , K, let C[•, k] give the J-digit binary representation

for ⌈k/(2I − 1)⌉, where ⌈·⌉ gives the ceiling operator.

C Proofs

Proposition 8. Under objective (7) in the main manuscript, the following are necessary

to allow for each Ŝ(k)
•• to be non-zero

1. If for k′ ̸= k the rows and columns of module k′ are contained within those for module

k, R[i, k]−R[i, k′] ≥ 0 ∀ i and C[j, k]−C[j, k′] ≥ 0 ∀ j, then λk > λk′.

2. If Ik ⊂ {1, . . . , k − 1, k + 1, . . . , K} is any subset of modules that together cover the

rows and columns of module k,
∑

j∈Ik R[•, j] = r ·R[•, k] and
∑

j∈Ik C[•, j] = c ·C[•, k]
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for positive integers r and c, then λk <
∑

j∈Ik λj.

Proof. Let {Ŝ(k)
•• }Kk=1 ∈ SX̂ be a minimizer of the objective function f(•). Assume a violation

of condition 1., wherein λk′ ≥ λk. Consider another minimizer {S̃(k)
•• }Kk=1, where S̃(k)

•• = 0

and S̃(k′)
•• = Ŝ(k)

•• +Ŝ(k′)
•• , and all other modules are equal. Then, using the triangle inequality,

f({Ŝ(k)
•• }Kk=1)− f({S̃(k)

•• }Kk=1) = λk||Ŝ(k)
•• ||∗ + λk′||Ŝ(k′)

•• ||∗ − λk||Ŝ(k)
•• + Ŝ(k′)

•• ||∗

≥ λk||Ŝ(k)
•• ||∗ + λk′ ||Ŝ(k′)

•• ||∗ − λk(||Ŝ(k)
•• ||∗ + ||Ŝ(k′)

•• ||∗)

≥ λk||Ŝ(k)
•• ||∗ + λk′ ||Ŝ(k′)

•• ||∗ − λk(||Ŝ(k)
•• ||∗)− λk′||Ŝ(k′)

•• ||∗)

= 0,

and thus there is a solution in which module k is 0, regardless of the data X••.

Now assume a violation of condition 2., wherein λk ≥
∑

j∈Ik λj. Let Ŝ(k) =
∑

j∈Ik Ŝ
j′
•• ,

where Ŝj′
•• contains the submatrix of Ŝ(k)

•• corresponding toR[•, j] andC[•, j] and 0 otherwise.

Consider another decomposition {S̃(k)
•• }Kk=1, where S̃(k)

•• = 0 and S̃(j)
•• = Ŝ(j)

•• + Ŝ(j)′
•• for all

j ∈ Ik. Then,

f({Ŝ(k)
•• }Kk=1)− f({S̃(k)

•• }Kk=1) = λk||Ŝ(k)
•• ||∗ +

∑
j∈Ik

λj||Ŝ(j)
•• ||∗ −

∑
j∈Ik

λj||Ŝ(j)
•• + Ŝ(j)′

•• ||∗

≥ λk||Ŝ(k)
•• ||∗ +

∑
j∈Ik

λj||Ŝ(j)
•• ||∗ −

∑
j∈Ik

λj||Ŝ(j)
•• ||∗ −

∑
j∈Ik

λj||Ŝ(j)′
•• ||∗

= λk||Ŝ(k)
•• ||∗ −

∑
j∈Ik

λj||Ŝ(j)′
•• ||∗

≥ λk||Ŝ(k)
•• ||∗ −

∑
j∈Ik

λj||Ŝ(k)
•• ||∗

≥ 0,

and thus there is a solution in which module k is 0, regardless of the data X••
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Proposition 4. Setting λk =
√

R[•, k] ·M+
√

C[•, k] ·N satisfies the necessary conditions

of Proposition 8.

Proof. For condition 1., note that
√

R[•, k] ·M+
√
C[•, k] ·N >

√
R[•, j] ·M+

√
C[•, j] ·N.

For condition 2., note that∑
j∈Ik

√
R[•, j] ·M+

√
C[•, j] ·N ≥

√∑
j∈Ik

R[•, j] ·M+

√∑
j∈Ik

C[•, j] ·N

=
√

r ·R[•, k] ·M+
√
c ·C[•, k] ·N

>
√

R[•, k] ·M+
√

C[•, k] ·N

Lemmas 1 and 2 below are used to establish Proposition 5 of the main manuscript.

Lemma 1. Take two decompositions {Ŝ(k)
•• }Kk=1 ∈ SX̂ and {S̃(k)

•• }Kk=1 ∈ SX̂, and assume that

both minimize the structured nuclear norm penalty:

fpen({Ŝ(k)
•• }Kk=1) = fpen

(
{S̃(k)

•• }Kk=1

)
= min

SX̂
fpen({S(k)

•• }Kk=1).

Then, for any α ∈ [0, 1],

||αŜ(k)
•• + (1− α)S̃(k)

•• ||∗ = α||Ŝ(k)
•• ||∗ + (1− α)||S̃(k)

•• ||∗

for k = 1, . . . , K.

Proof. Because SX̂ is a convex space and fpen is a convex function, the set of minimizers

of fpen over SX̂ is also convex. Thus,

fpen

(
{αŜ(k)

•• + (1− α)S̃(k)
•• }Kk=1

)
= min

SX̂
fpen({S(k)

•• }Kk=1).
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The result follows from the convex property of the nuclear norm operator, which implies

that for any two matrices of equal size Â and Ã,

||αÂ+ (1− α)Ã||∗ ≤ α||Â||∗ + (1− α)||Ã||∗. (19)

Applying (19) to each additive term in fpen gives

fpen

(
{αŜ(k)

•• + (1− α)S̃(k)
•• }Kk=1

)
≤ αfpen({Ŝ(k)

•• }Kk=1) + (1− α)fpen({S̃(k)
•• }Kk=1) (20)

= min
SX̂

fpen({S(k)
•• }Kk=1).

Because {αŜ(k)
•• + (1 − α)S̃(k)

•• }Kk=1 ∈ SX̂, the inequality in (20) must be an equality, and

it follows that the inequality (19) must be an equality for each penalized term in the

decomposition.

Lemma 2. Take two matrices Â and Ã. If ||Â + Ã|| = ||Â||∗ + ||Ã||∗, and UD+V
T

is the SVD of Â + Ã, then Â = ÛD̂V̂T where D is diagonal and ||Â||∗ = ||D̂||∗, and

Ã = UD̃VT where D̃ is diagonal and ||Ã||∗ = ||D̃||∗.

Proof. Here we use the fact that the spectral norm is dual to the nuclear norm (Fazel et al.,

2001). That is, if σ1(Z) is the maximum singular value of Z (i.e., the spectral norm), then

||A||∗ = sup
σ1(Z)=1

< Z,A > .

Thus,

sup
σ1(Z)=1

⟨Z, Â+ Ã⟩ = sup
σ1(Z)=1

⟨Z, Â⟩+ sup
σ1(Z)=1

⟨Z, Ã⟩. (21)

By the properties of the SVD,

⟨UVT , Ã⟩+ ⟨UVT , Â⟩ = ⟨UVT , Â+ Ã⟩ = sup
σ1(Z)=1

⟨Z, Â+ Ã⟩. (22)
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By (21) and (22),

⟨UVT , Â⟩ = sup
σ1(Z)=1

< Z,A >= ||A||∗,

and similarly ⟨UVT , Ã⟩ = ||Ã||∗. Let ŨD̃ṼT give the SVD of Ã. Note that

⟨UVT , ŨD̃ṼT ⟩ = Tr(VUT ŨD̃ṼT ) = Tr(VT ṼUT ŨD̃),

and

Tr(VT ṼUT ŨD̃) = ||Ã||∗ =
∑
i

D̃[i, i]

if and only if VT ṼUT Ũ[i, i] = 1 where D̃[i, i] > 0. It follows that the left and right singular

vectors of Ã that correspond to non-zero singular values must also be singular vectors of

Â + Ã. By an analogous argument, the left and right singular vectors that correspond to

non-zero singular values in Â must also be singular vectors of Â+ Ã.

Proposition 5. Take two decompositions {Ŝ(k)
•• }Kk=1 ∈ SX̂ and {S̃(k)

•• }Kk=1 ∈ SX̂, and assume

that both minimize the structured nuclear norm penalty:

fpen({Ŝ(k)
•• }Kk=1) = fpen

(
{S̃(k)

•• }Kk=1

)
= min

SX̂
fpen({S(k)

•• }Kk=1).

Then, Ŝ(k)
•• = U(k)

• D̂(k)V(k)T
• and Ŝ(k)

•• = U(k)
• D̃(k)V(k)T

• where U(k)
• : M × Rk and V(k)

• :

N ×Rk have orthonormal columns, and D̂(k) and D̃(k) are diagonal.

Proof. This result is a direct corollary of Lemmas 1 and 2. Lemma 1 implies ||Ŝ(k)
•• +S̃(k)

•• ||∗ =

||Ŝ(k)
•• ||∗ + ||S̃(k)

•• ||∗ for each k, and then lemma 2 implies the result.

Theorem 2. Consider {Ŝ(k)
•• }Kk=1 ∈ SX̂ and let U(k)

• D̂V(k)T
• give the SVD of Ŝ(k)

•• for k =

1, . . . , K. The following three properties uniquely identify {Ŝ(k)
•• }Kk=1.

1. {Ŝ(k)
•• }Kk=1 minimizes fpen(·) over SX̂,
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2. {Û(k)
i [•, r] : R[i, k] = 1 and D̂(k)[r, r] > 0} are linearly independent for i = 1, . . . I,

3. {V̂(k)
j [•, r] : C[j, k] = 1 and D̂(k)[r, r] > 0} are linearly independent for j = 1, . . . , J .

Proof. Take two decomposition {Ŝ(k)
•• }Kk=1 and {S̃(k)

•• }Kk=1 that satisfy properties 1., 2., and 3.;

we will show that {Ŝ(k)
•• }Kk=1 = {S̃(k)

•• }Kk=1. For each k = 1, . . . , K, write Ŝ(k)
•• = U(k)

• D̂V(k)T
•

and Ŝ(k)
•• = U(k)

• D̃(k)V(k)T
• as in Proposition 5. Then, it suffices to show that D̂(k)[r, r] =

D̃(k)[r, r] for all k, r.

First, consider module k = 1 with R[•, 1] = [1 0 · · · 0]T and C[•, 1] = [1 0 · · · 0]T . By

way of contradiction, assume D̂(1)[1, 1] > 0 and D̃(1)[1, 1] = 0. The linear independence of

{V(k)
j [•, r] : D̂(k)[r, r] > 0} and {V(k)

j [•, r] : D̃(k)[r, r] > 0} implies that

row(X••) = span{U(k)
• [•, r] : D̂(k)[r, r] > 0} = span{{U(k)

• [•, r] : D̃(k)[r, r] > 0}.

Thus, U(1)[•, 1]] ∈ span{{U(k)
• [•, r] : D̃(k)[r, r] > 0}, and it follows from the orthogonality of

U(1)[•, 1] and {U(1)[•, r], r > 1} that

U(1)
• [•, 1] ∈ span{{U(k)

• [•, r] : D̃(k)[r, r] > 0 and k > 1}.

Moreover, because U
(1)
i = 0 for any i > 1 and {U(k)

i [•, r] : D̃(k)[r, r] > 0} are linearly

independent it follows that

U(1)
• [•, 1] ∈ span{U(k)

• [•, r] : D̃(k)[r, r] > 0, k > 1, and R[i, k] = 0 for any i > 1}. (23)

Note that (23) implies U
(1)
1 [•, 1] ∈ row(X12 + · · ·+ row(X1J), however, this is contradicted

by the linear independence of U
(1)
1 [•, 1] and {U(k)

i [•, r] : D̂(k)[r, r] > 0, k > 1}. Thus,

we conclude that D̃(1)[1, 1] > 0 implies D̃(1)[1, 1] > 0. Analogous arguments show that

D̃(k)[r, r] > 0 if and only if D̃(k)[r, r] > 0 for any pair (r, k). It follows that {U(k)
i [•, r] :

D̂(k)[r, r] > 0 or D̃(k)[r, r] > 0} are linearly independent for i = 1, . . . I, and {V(k)
j [•, r] :
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D̂(k)[r, r] > 0 or D̃(k)[r, r] > 0} are linearly independent for j = 1, . . . , J . Thus,

K∑
k=1

U(k)
• (D̂(k) − D̃(k))V(k)T

• =
K∑
k=1

Ŝ(k)
•• − S̃(k)

•• = X•• −X•• = 0

implies that D̂(k)[r, r] = D̃(k)[r, r] for all k, r.
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