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Linear model

» For observations y1, ..., y,, the basic linear model is

Yi = x1iB1 + ... + XpiBp + €i,

» Xij,...,Xp are predictors for the it" observation.

» ¢€; are error terms.

» In matrix form:
y=XB+e

g y:(y17"'7yn)v6:(617-~-36n)vﬂ:(ﬂlv"'aﬁp)

» X is the matrix with entries Xj; = x;;
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Linear model

» Assume X is fixed (non-random)

» Assume errors are normal and iid with equal variance:

e ~ Normal(0, 5°/).

» Standard frequentist estimates are
f=(XTX)"1XTy and

=y XDy - XP)

6'2

» These estimates are unbiased, and can be motivated by

least-squares.

» Under a Bayesian framework, we put a prior on 3 and o?.
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Uninformative priors

e Consider uniform prior for 3 and Jeffreys prior for o2:

p(B,0%) o %

@ The posterior for 3, given o2, is

p(B]y,o?) = Normal (B,oz(XTX)_1)>
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Uninformative priors

@ The marginal posterior of o2 is

p(o®ly) =1G <”;P, (n —2/9)52)

o Equivalently:

s
0°~-—— where U~ X%n—p)‘
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Uninformative priors

» The marginal posterior for 3; is a non-central t-distribution:
Bi — Bi

sv/(XTX); 1

» For a new predictor vector x(,,1), the posterior predictive for
Yn+1 Is also a non-central t-distribution:

~ top.

Yn+1 — xn+lﬁ’\ ~t
SV1+ X001 (XTX) x4

» All given results for p(3,02) % correspond to standard

frequentist inference for linear regression!
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Example: Body Fat

» The % body fat (BF%) is measured for 100 adult males. ?

» Using sophisticated and precise technique (water immersion)

» Also measure the following for each person:
» 1: Age (in years)
» 2: Weight (in pounds)
» 3: Height (in inches)
» Circumference of the neck (4), chest (5), abdomen (6), ankle
(7), bicep (8), and wrist (9) in cm.

» Data available at
http://www.lockbstat.com/datasetsle/BodyFat.csv

» Would like to predict BF% from the 9 additional
measurements

! Johnson, R. “Fitting Percentage Body Fat to Simple Body
Measurements,” Journal of Statistics Education, 1996.
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Example: Body Fat

» Assume ¥ = (J1,- .-, 100) give BF% for subjects 1,...,100
> 7 =18.6%
> S5p = 8.01%

» Let X : 100 x 9 be the matrix of standardized predictors

X; i — mean(X. ;
Xij = i () J)

stdev(X.

» X;j is measurement j (unstandardized) for subject i

» The mean BF% for american adult men is 18.5%

» Fory =y — 18.5 consider the model

y=p08X+e€
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Example: Body Fat

» Assume ¢ ~ Normal(0, o2/)

» Use uninformative prior:

p(B0%) =

o2

» Recall p(5;|y) is a non-central t:

Bi - /BI £
~ tg1
sv/(XTX);*
where
B=(XTX)"XTy
and

1 N
=/ =|ly — XB)|]2 = 4.11
s 91Hy B)l|
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Example: Body Fat

o Estimates and 95% credible intervals for f’s:

Variable Bi 95% credible interval
Age 0956  (-0.186, 2.099)
Weight  -2.458  (-7.397, 2.480)
Height  0.097 (-1.328, 1.523)
Neck  0.002  (-1.727, 1.732)
Chest -1.181 (-3.889, 1.526)
( )
( )
(

Abdomen 10.597 7.639, 13.554
Ankle 0.304 -1.137, 1.745
Biceps 0.454 -0.935, 1.844)
Wrist -2.201 (-3.807, -0.596)

http://wuw.ericfrazerlock.com/More_on_Linear_
Models_Rcodel.r
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Example: Body Fat

21y) — 91 91s%).
@ Recall p(c°|y) =1G (7, > )

o | ~
=}
=
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£ o
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o
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o
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sigmar2

http://www.ericfrazerlock.com/More_on_Linear_Models_Rcodel.r
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Variance estimate, uninformative priors

» Note for the uninformative prior p(u, %) = %

S2n—
£ |y) = =2

» However, the expected precision is

E(1/0y)=

» s still commonly used as point estimate for error variance.
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» Recall: defined Bayesian residual as
ri=yi—E(Yilyu)
where yj) = (y1,- .-, Yi—1, Yit1, - -+ ¥n)
» For this context, the Bayesian residual is
r=yi— XiB(i)
where BA(,-) = (X(,T)X(,-))_lX(,T)y(,-).

» The standard (non-Bayesian) definition of residual is

A

ri=Yyi—Xxip
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Example: Body Fat

Standard residuals
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Example: Body Fat

Predicted vs observed (standard)
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Normal-inverse-gamma prior

e Consider independent normal priors for the f!s:
B|o? ~ Normal(0,0°T)

where Tj; = 7',-2 if i =j, 0 otherwise.

@ And an inverse-gamma prior for o2
2
0 ~ 1G(a, b).

@ The full prior is

1%
p(B,0) = 1G(c? | a, b) | [ Normal(8; | 0,0%77)
=1
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Normal-inverse-gamma prior

@ The posterior for 3, given o2, is

p(B]y,0?) = Normal (5,02 Vﬁ)

where = (XTX + T-H)"1(XTy)
and Vg = (XTX 4+ T71)71
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Normal-inverse-gamma prior

@ The estimate [ solves a penalized least squares criterion:

P
B = argmin|ly — XB||* + ) 87/77
B i—1

o Shrinks unbiased estimate 3 toward 0.
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Normal-inverse-gamma prior

» The marginal posterior for o is

p(o? | y) = IG (an, bn)

where 3, = 3+ § and b, = b-+ Hlyy ~ ATV 1)

» The marginal posterior for 3 is a multivariate t-distribution

_Bi—=Bi Bi
2 (V)i

t2a+n-
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Normal-inverse-gamma prior

» For a new predictor vector x,41, the posterior predictive for

Vni1 given o2 is

Yni1 | 02,y ~ Normal(xpi15, 02(1 + xpy1Vax, 1))

» The full posterior predictive distribution is a non-central t:

Yn+1 — xn+15
V(1 X Vix] )

~ t2a+n‘
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Extensions

» There are many other versions of the Bayesian linear model.
» E.g.: Could use non-trivial mean and covariance for 5:

B ~ Normal(pug, T)

» E.g.: Could relax iid assumption for y/s, model general
covariance:
y ~ Normal(X3, X)

requires a prior for .

» For more details and derivations see
http://www.ericfrazerlock.com/LM_GoryDetails.pdf
and Carlin & Louis 4.1.1
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