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Linear model

I For observations y1, . . . , yn, the basic linear model is

yi = x1iβ1 + ...+ xpiβp + εi ,

I x1i , . . . , xpi are predictors for the i th observation.

I εi are error terms.

I In matrix form:
y = Xβ + ε

I y = (y1, . . . , yn), ε = (ε1, . . . , εn), β = (β1, . . . , βp)

I X is the matrix with entries Xij = xij
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Linear model

I Assume X is fixed (non-random)

I Assume errors are normal and iid with equal variance:

ε ∼ Normal(0, σ2I ).

I Standard frequentist estimates are

β̂ = (XTX )−1XTy and

σ̂2 = s2 =
1

n − p
(y − X β̂)T (y − X β̂).

I These estimates are unbiased, and can be motivated by
least-squares.

I Under a Bayesian framework, we put a prior on β and σ2.
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Uninformative priors

Consider uniform prior for β and Jeffreys prior for σ2:

p(β, σ2) ∝ 1

σ2
.

The posterior for β, given σ2, is

p(β | y, σ2) = Normal
(
β̂, σ2(XTX )−1)

)
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Uninformative priors

The marginal posterior of σ2 is

p(σ2 | y) = IG

(
n − p

2
,

(n − p)s2

2

)

Equivalently:

σ2 ∼ (n − p)s2

U
where U ∼ χ2

(n−p).
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Uninformative priors

I The marginal posterior for βi is a non-central t-distribution:

βi − β̂i
s
√

(XTX )−1ii

∼ tn−p.

I For a new predictor vector x(n+1), the posterior predictive for
yn+1 is also a non-central t-distribution:

yn+1 − xn+1β̂

s
√

1 + xn+1(XTX )−1xn+1

∼ tn−p.

I All given results for p(β, σ2) ∝ 1
σ2 correspond to standard

frequentist inference for linear regression!
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Example: Body Fat

I The % body fat (BF%) is measured for 100 adult males. 1

I Using sophisticated and precise technique (water immersion)

I Also measure the following for each person:

I 1: Age (in years)

I 2: Weight (in pounds)

I 3: Height (in inches)

I Circumference of the neck (4), chest (5), abdomen (6), ankle
(7), bicep (8), and wrist (9) in cm.

I Data available at

http://www.lock5stat.com/datasets1e/BodyFat.csv

I Would like to predict BF% from the 9 additional
measurements

1Johnson, R. “Fitting Percentage Body Fat to Simple Body
Measurements,” Journal of Statistics Education, 1996.
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Example: Body Fat

I Assume ỹ = (ỹ1, . . . , ỹ100) give BF% for subjects 1, . . . , 100

I ¯̃y = 18.6%

I sỹ = 8.01%

I Let X : 100× 9 be the matrix of standardized predictors

Xi ,j =
x̃i ,j −mean(x̃·,j)

stdev(x̃·,j)

I X̃i,j is measurement j (unstandardized) for subject i

I The mean BF% for american adult men is 18.5%

I For y = ỹ − 18.5 consider the model

y = βX + ε
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Example: Body Fat

I Assume ε ∼ Normal(0, σ2I )

I Use uninformative prior:

p(β, σ2) =
1

σ2

I Recall p(βi | y) is a non-central t:

βi − β̂i
s
√

(XTX )−1ii

∼ t91.

where
β̂ = (XTX )−1XTy

and

s =

√
1

91
||y − X β̂)||2 = 4.11
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Example: Body Fat

Estimates and 95% credible intervals for β′i s:

Variable β̂i 95% credible interval

Age 0.956 (-0.186, 2.099)
Weight -2.458 (-7.397, 2.480)
Height 0.097 (-1.328, 1.523)
Neck 0.002 (-1.727, 1.732)
Chest -1.181 (-3.889, 1.526)

Abdomen 10.597 (7.639, 13.554)
Ankle 0.304 (-1.137, 1.745)
Biceps 0.454 (-0.935, 1.844)
Wrist -2.201 (-3.807, -0.596)

http://www.ericfrazerlock.com/More_on_Linear_

Models_Rcode1.r
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Example: Body Fat

Recall p(σ2 | y) = IG
(
91
2 ,

91 s2

2

)
:
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Variance estimate, uninformative priors

I Note for the uninformative prior p(µ, σ2) = 1
σ2 ,

E (σ2 | y) =
s2(n − p)

n − p − 2

I However, the expected precision is

E (1/σ2 | y) =
1

s2

I s2 still commonly used as point estimate for error variance.
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Residuals

I Recall: defined Bayesian residual as

r ′i = yi − E (Yi | y(i))

where y(i) = (y1, . . . , yi−1, yi+1, . . . , yn)

I For this context, the Bayesian residual is

r ′i = yi − xi β̂(i)

where β̂(i) = (XT
(i)X(i))

−1XT
(i)y(i).

I The standard (non-Bayesian) definition of residual is

ri = yi − xi β̂
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Example: Body Fat
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Example: Body Fat
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Normal-inverse-gamma prior

Consider independent normal priors for the β′i s:

β | σ2 ∼ Normal(0, σ2T )

where Tij = τ2i if i = j , 0 otherwise.

And an inverse-gamma prior for σ2:

σ2 ∼ IG (a, b).

The full prior is

p(β, σ2) = IG (σ2 | a, b)

p∏
i=1

Normal(βi | 0, σ2τ2i )
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Normal-inverse-gamma prior

The posterior for β, given σ2, is

p(β | y, σ2) = Normal
(
β̃, σ2Vβ

)
where β̃ = (XTX + T−1)−1(XTy)

and Vβ = (XTX + T−1)−1
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Normal-inverse-gamma prior

The estimate β̃ solves a penalized least squares criterion:

β̃ = argmin
β
||y − XB||2 +

p∑
i=1

β2i /τ
2
i

Shrinks unbiased estimate β̂ toward 0.
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Normal-inverse-gamma prior

I The marginal posterior for σ2 is

p(σ2 | y) = IG (an, bn)

where an = a + n
2 and bn = b + 1

2 [yTy − β̃TV−1β β̃]

I The marginal posterior for β is a multivariate t-distribution

βi − β̃i√
bn
an

(Vβ)ii

∼ t2a+n.
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Normal-inverse-gamma prior

I For a new predictor vector xn+1, the posterior predictive for
yn+1 given σ2 is

yn+1 | σ2 ∼ Normal(xn+1β̃, σ
2(1 + xn+1Vβx

T
n+1))

I The full posterior predictive distribution is a non-central t:

yn+1 − xn+1β̃√
bn
an

(
1 + xn+1VβxTn+1

) ∼ t2a+n.
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Extensions

I There are many other versions of the Bayesian linear model.

I E.g.: Could use non-trivial mean and covariance for β:

β ∼ Normal(µβ,T )

I E.g.: Could relax iid assumption for y ′i s, model general
covariance:

y ∼ Normal(Xβ,Σ)

requires a prior for Σ.

I For more details and derivations see
http://www.ericfrazerlock.com/LM_GoryDetails.pdf

and Carlin & Louis 4.1.1
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