Bayesian Linear Models

PUBH 8442: Bayes Decision Theory and Data Analysis

Eric F. Lock
UMN Division of Biostatistics, SPH
elock@umn.edu

03/8/2021

Linear model

- For observations y_{1}, \ldots, y_{n}, the basic linear model is

$$
y_{i}=x_{1 i} \beta_{1}+\ldots+x_{p i} \beta_{p}+\epsilon_{i}
$$

- $x_{1 i}, \ldots, x_{p i}$ are predictors for the $i^{t h}$ observation.
- ϵ_{i} are error terms.
- In matrix form:

$$
\mathbf{y}=X \boldsymbol{\beta}+\boldsymbol{\epsilon}
$$

- $\mathbf{y}=\left(y_{1}, \ldots, y_{n}\right), \boldsymbol{\epsilon}=\left(\epsilon_{1}, \ldots, \epsilon_{n}\right), \boldsymbol{\beta}=\left(\beta_{1}, \ldots, \beta_{p}\right)$
- X is the matrix with entries $X_{i j}=x_{i j}$

Linear model

- Assume X is fixed (non-random)
- Assume errors are normal and iid with equal variance:

$$
\boldsymbol{\epsilon} \sim \operatorname{Normal}\left(\mathbf{0}, \sigma^{2} I\right)
$$

- Standard frequentist estimates are

$$
\begin{aligned}
& \text { equentist estimates are } \\
& \hat{\beta}=\left(X^{T} X\right)^{-1} X^{T} \mathbf{y} \text { and } \sum_{i=1}^{n}\left(y_{i}-X_{i} \hat{B}\right)^{2} \\
& \hat{\sigma}^{2}=s^{2}=\frac{1}{n-p} \widetilde{(\mathbf{y}-X \hat{\beta})^{T}(\mathbf{y}-X \hat{\beta}) .}
\end{aligned}
$$

- These estimates are unbiased, and can be motivated by least-squares.
- Under a Bayesian framework, we put a prior on β and σ^{2}.

Uninformative priors

$$
\vec{X} \sim N(\vec{u}, v), P(\vec{x}) \infty \exp \left(-\frac{1}{2}(\vec{x}-\vec{u})^{\top} \sum^{-1}\right.
$$

- Consider uniform prior for β and Jeffreys prior for σ^{2} : $(\vec{x}-\vec{\mu})$

$$
p\left(\beta, \sigma^{2}\right) \propto \frac{1}{\sigma^{2}}
$$

- The posterior for β, given σ^{2}, is

$$
\begin{aligned}
& P\left(\vec{B} \mid \vec{y}, \sigma^{2}\right)^{\left.p\left(\beta \mid y, \sigma^{2}\right)=\operatorname{Normal}\left(\hat{\beta}, \sigma^{2}\left(X^{\top} X\right)^{-1}\right)\right)} \propto \\
& \propto \exp \left\{\left(\vec{y} \mid B, \sigma^{2}\right) \cdot \frac{P\left(\beta, \sigma^{2}\right)}{\alpha \sigma^{2}}(\vec{y}-X \beta)^{\top}(\vec{y}-X \beta)\right\} \\
& \cdots \frac{1}{\sigma^{2}} \alpha 1 \\
& \alpha \exp \left\{-\frac{1}{2}\left(\beta-\left(X^{\top} X\right)^{-1} \times{ }^{\top} y\right)^{\top}\left(\sigma^{2}\left(X^{\top} X\right)^{-1}\right)^{-1}\right\} \\
& \left.\quad\left(\beta-\left(X^{\top} X\right)^{-1} X^{\top} \vec{y}\right)\right\}
\end{aligned}
$$

Uninformative priors

- The marginal posterior of σ^{2} is

$$
p\left(\sigma^{2} \mid \mathbf{y}\right)=I G\left(\frac{n-p}{2}, \frac{(n-p) s^{2}}{2}\right)
$$

- Equivalently:

$$
\sigma^{2} \sim \frac{(n-p) s^{2}}{U} \text { where } U \sim \chi_{(n-p)}^{2}
$$

Uninformative priors

- The marginal posterior for β_{i} is a non-central \mathbf{t}-distribution:

$$
\frac{\beta_{i}-\hat{\beta}_{i}}{s \sqrt{\left(X^{T} X\right)_{i i}^{-1}}} \sim t_{n-p}
$$

- For a new predictor vector $\mathbf{x}_{(n+1)}$, the posterior predictive for y_{n+1} is also a non-central t-distribution:

$$
\frac{y_{n+1}-\mathbf{x}_{n+1} \hat{\beta}}{s \sqrt{1+\mathbf{x}_{n+1}\left(X^{\top} X\right)^{-1} \mathbf{x}_{n+1}}} \sim t_{n-p}
$$

- All given results for $p\left(\beta, \sigma^{2}\right) \propto \frac{1}{\sigma^{2}}$ correspond to standard frequentist inference for linear regression!

Example: Body Fat

- The \% body fat (BF\%) is measured for 100 adult males. ${ }^{1}$
- Using sophisticated and precise technique (water immersion)
- Also measure the following for each person:
- 1: Age (in years)
- 2: Weight (in pounds)
- 3: Height (in inches)
- Circumference of the neck (4), chest (5), abdomen (6), ankle (7), bicep (8), and wrist (9) in cm.
- Data available at http://www.lock5stat.com/datasetsle/BodyFat.csv
- Would like to predict BF\% from the 9 additional measurements

[^0]
Example: Body Fat

- Assume $\tilde{\mathbf{y}}=\left(\tilde{y}_{1}, \ldots, \tilde{y}_{100}\right)$ give $B F \%$ for subjects $1, \ldots, 100$
- $\overline{\tilde{y}}=18.6 \%$
- $s_{\tilde{y}}=8.01 \%$
- Let X : 100×9 be the matrix of standardized predictors

$$
X_{i, j}=\frac{\tilde{x}_{i, j}-\operatorname{mean}\left(\tilde{\mathbf{x}}_{\cdot j}\right)}{\operatorname{stdev}\left(\tilde{\mathbf{x}}_{\cdot, j}\right)}
$$

- $\tilde{X}_{i, j}$ is measurement j (unstandardized) for subject i
- The mean BF\% for american adult men is 18.5%
- For $\mathbf{y}=\tilde{\mathbf{y}} \mathbf{- 1 8 . 5}$ consider the model

$$
\mathbf{y}=\beta X+\epsilon
$$

Example: Body Fat

- Assume $\epsilon \sim \operatorname{Normal}\left(\mathbf{0}, \sigma^{2} l\right)$
- Use uninformative prior:

$$
p\left(\beta, \sigma^{2}\right)=\frac{1}{\sigma^{2}}
$$

- Recall $p\left(\beta_{i} \mid \mathbf{y}\right)$ is a non-central t :

$$
\begin{aligned}
& \frac{\beta_{i}-\hat{\beta}_{i}}{s \sqrt{\left(X^{\top} X\right)_{i i}^{-1}}} \sim t_{91} . \text { UR: use } t_{9), 0.975}^{\left(X^{\top} X\right)_{i i}^{-1}} t_{91}+\hat{\beta}_{i}
\end{aligned}
$$

where

$$
\hat{\beta}=\left(X^{T} X\right)^{-1} X^{T} \mathbf{y}
$$

$L B i t_{91,0.025}$
and

$$
s=\sqrt{\left.\frac{1}{91} \| \mathbf{y}-X \hat{\beta}\right) \|^{2}}=4.11
$$

- Estimates and 95% credible intervals for $\beta_{i}^{\prime} s$:

Variable	$\hat{\beta}_{i}$	95\% credible interval
Age	0.956	$(-0.186,2.099)$
Weight	-2.458	$(-7.397,2.480)$
Height	0.097	$(-1.328,1.523)$
Neck	0.002	$(-1.727,1.732)$
Chest	-1.181	$(-3.889,1.526)$
Abdomen	10.597	$(7.639,13.554)$
Ankle	0.304	$(-1.137,1.745)$
Biceps	0.454	$(-0.935,1.844)$
Wrist	-2.201	$(-3.807,-0.596)$

http://www.ericfrazerlock.com/More_on_Linear_ Models_Rcode1.r

Example: Body Fat

- Recall $p\left(\sigma^{2} \mid \mathbf{y}\right)=I G\left(\frac{91}{2}, \frac{91 s^{2}}{2}\right)$:

http://www.ericfrazerlock.com/More_on_Linear_Models_Rcode1.r

Variance estimate, uninformative priors

- Note for the uninformative prior $p\left(\mu, \sigma^{2}\right)=\frac{1}{\sigma^{2}}$,
$2-I G(a, b)$
$E(z)=\frac{6}{a-1}$

$$
E\left(\sigma^{2} \mid \mathbf{y}\right)=\frac{s^{2}(n-p)}{n-p-2}
$$

- However, the expected precision is

$$
E\left(1 / \sigma^{2} \mid \mathbf{y}\right)=\frac{1}{s^{2}}
$$

- s^{2} still commonly used as point estimate for error variance.

Residuals

- Recall: defined Bayesian residual as

$$
r_{i}^{\prime}=y_{i}-E\left(Y_{i} \mid \mathbf{y}_{(i)}\right)
$$

where $\mathbf{y}_{(i)}=\left(y_{1}, \ldots, y_{i-1}, y_{i+1}, \ldots, y_{n}\right)$

- For this context, the Bayesian residual is

$$
r_{i}^{\prime}=y_{i}-\mathbf{x}_{i} \hat{\beta}_{(i)}
$$

where $\hat{\beta}_{(i)}=\left(X_{(i)}^{T} X_{(i)}\right)^{-1} X_{(i)}^{T} \mathbf{y}_{(i)}$.

- The standard (non-Bayesian) definition of residual is

$$
r_{i}=y_{i}-\mathbf{x}_{i} \hat{\beta}
$$

Example: Body Fat

Standard residuals

Bayesian residuals

Example: Body Fat

Predicted vs observed (standard)

Predicted vs observed (Bayesian)

Normal-inverse-gamma prior

- Consider independent normal priors for the $\beta_{i}^{\prime} s$:

$$
\beta \mid \sigma^{2} \sim \operatorname{Normal}\left(0, \sigma^{2} T\right)
$$

where $T_{i j}=\tau_{i}^{2}$ if $i=j, 0$ otherwise.

- And an inverse-gamma prior for σ^{2} :

$$
\sigma^{2} \sim I G(a, b)
$$

- The full prior is

$$
p\left(\beta, \sigma^{2}\right)=I G\left(\sigma^{2} \mid a, b\right) \prod_{i=1}^{p} \operatorname{Normal}\left(\beta_{i} \mid 0, \sigma^{2} \tau_{i}^{2}\right)
$$

Normal-inverse-gamma prior

- The posterior for β, given σ^{2}, is

$$
p\left(\beta \mid \mathbf{y}, \sigma^{2}\right)=\operatorname{Normal}\left(\tilde{\beta}, \sigma^{2} V_{\beta}\right)
$$

where $\tilde{\beta}=\left(X^{T} X+T^{-1}\right)^{-1}\left(X^{T} \mathbf{y}\right)$
and $V_{\beta}=\left(X^{T} X+T^{-1}\right)^{-1}$

Normal-inverse-gamma prior

- The estimate $\tilde{\beta}$ solves a penalized least squares criterion:

$$
\begin{aligned}
& \qquad \tilde{\beta}=\underset{\beta}{\operatorname{argmin}} \underbrace{\|\mathbf{y}-X B\|^{2}+\sum_{i=1}^{p} \beta_{i}^{2} / \tau_{i}^{2}} \\
& =(y-X \beta)^{\top}(y-X B) \rho \beta^{\top} T^{-1} \beta \\
& =y^{\top} y-\beta^{\top} X^{\top} x-\beta^{\top} y+\beta^{\top} X^{\top} x \beta+\beta^{\top} T^{-1} \beta \\
& \frac{d}{\alpha \beta} \mathscr{L}=-2 x^{\top} y+2 x^{\top} x \beta+2 T^{-1} \beta=0 \\
& \quad \rightarrow \quad \text { Shrinks unbiased estimate } \hat{\beta} \text { toward } 0 .
\end{aligned}
$$

Normal-inverse-gamma prior

- The marginal posterior for σ^{2} is

$$
p\left(\sigma^{2} \mid \mathbf{y}\right)=I G\left(a_{n}, b_{n}\right)
$$

where $a_{n}=a+\frac{n}{2}$ and $b_{n}=b+\frac{1}{2}\left[\mathbf{y}^{T} \mathbf{y}-\tilde{\beta}^{T} V_{\beta}^{-1} \tilde{\beta}\right]$

- The marginal posterior for β is a multivariate t -distribution

$$
\frac{\beta_{i}-\tilde{\beta}_{i}}{\sqrt{\frac{b_{n}}{a_{n}}\left(V_{\beta}\right)_{i i}}} \sim t_{2 a+n}
$$

Normal-inverse-gamma prior

- For a new predictor vector \mathbf{x}_{n+1}, the posterior predictive for y_{n+1} given σ^{2} is

$$
\begin{aligned}
& y_{n+1} \mid\left(\sigma^{2}, \stackrel{\rightharpoonup}{y}\right) \\
& y_{n+1}=X_{n+1} \beta+\epsilon_{n+1}
\end{aligned}
$$

- The full posterior predictive distribution is a non-central t :

$$
\begin{aligned}
& E\left(y_{n+1} \mid \vec{y}, \sigma^{2}\right)=x_{n+1} E\left(B \mid \vec{y}, \sigma^{2}\right)+0 \\
& \left(V\left(y_{n+1}\right) \stackrel{\rightharpoonup}{y}, \sigma^{2}\right) \\
& =V\left(x_{n+1} \beta \mid \vec{y}, \sigma^{2}\right)+\sigma^{2} \\
& \begin{aligned}
&=x_{n+1}, V\left(\vec{B} / \vec{y}, \sigma^{2}\right) x_{n+1}^{\top} \\
&+\sigma^{2}
\end{aligned}
\end{aligned}
$$

- There are many other versions of the Bayesian linear model.
- E.g.: Could use non-trivial mean and covariance for β :

$$
\beta \sim \operatorname{Normal}\left(\mu_{\beta}, T\right)
$$

- E.g.: Could relax iid assumption for $y_{i}^{\prime} s$, model general covariance:

$$
\mathbf{y} \sim \operatorname{Normal}(X \beta, \Sigma)
$$

requires a prior for Σ.

- For more details and derivations see http://www.ericfrazerlock.com/LM_GoryDetails.pdf and Carlin \& Louis 4.1.1

[^0]: ${ }^{1}$ Johnson, R. "Fitting Percentage Body Fat to Simple Body Measurements," Journal of Statistics Education, 1996.

