Bayesian estimation software

PUBH 8442: Bayes Decision Theory and Data Analysis

Eric F. Lock UMN Division of Biostatistics, SPH elock@umn.edu

04/8/2024

PUBH 8442: Bayes Decision Theory and Data Analysis Bayesian estimation software

Bayesian estimation software

- Several stand-alone applications and add-ons to estimate Bayesian models
- Stand-alone applications:
 - Bayesian Inference using Gibbs Sampling (BUGS): winBUGS, openBUGS, and multiBUGS
 - ► Just Another Gibbs Sampler (JAGS), maintained by Martin Plummer and others
 - Stan, maintained by Andrew Gelman and others
- Packages in R
 - Package MCMC, maintained by Charles Greyer
 - Package Nimble, maintained by Chris Paciorek and others
 - Packages to run openBUGS, rjags, or STAN through R

winBUGS, openBUGS, and multiBUGS: history

- The BUGS project started in early 1990's from the MRC Biostatistics Unit, Cambridge
- WinBUGS first introduced in mid-90s
 - Became widely adopted software for Bayesian modeling in many application areas
- openBUGS was introduced in approximately 2009
 - Very similar to winBUGS, but open-source and slightly more flexible
- multiBUGS was introduced around 2020
 - Similar to openBUGS, but uses parallel computing to speed up computation.
- Development is now focused on multiBUGS

- Just Another Gibbs Sampler (JAGS)
- ▶ First developed by Martyn Plummer in early 2000's
- Based on the BUGS language, with many similarities
- Usable on any operating system (windows, mac, linux)
- Well-integrated with R through the rjags package
- I cannot get OpenBUGS/MultiBugs to work on my Mac laptop (OS: Ventura)
 - rjags code for the examples in this slide deck: https://www.ericfrazerlock.com/rjags_examples.r

openBUGS: Installing

- Download openBUGS from this link.
- Straightforward in Windows or Linux
- ▶ For a Mac, this used to work for me:
 - Download Wine.app from the Wine Bottler website
 - Install Wine.app this will facilitate running Windows programs.
 - Download the windows .exe file from openBUGS
 - Run this .exe file to install openBUGS (double-clicking should open it in Wine)
 - Run the OpenBUGS.exe from the application folder (again, this should open automatically in Wine)

openBUGS: input

- openBUGS is a mix of "point-and-click" menus and command code
- Input for a given application consists of the model, data, and initialization
- The model is given in BUGS language, which has syntax similar to R
 - Define sampling model, and the distribution for each parameter
 - BUGS recognizes several common distributions
 - Example syntax for normal-normal model with flat prior: model{

```
for(i in 1:n){
```

 $y[i] \sim dnorm(mu, \, Prec) \ \#2nd$ parameter is precision, NOT variance

```
ight\} {
m mu} \sim {
m dflat()} 
ight\}
```

openBUGS: input

- Data and fixed parameters are specified in list form, with syntax similar to R: list(Prec=0.5, y=c(2.6,1.2,-0.4,3.7,3.1),n=5)
- Initial values are also given in list form list(mu = 0)
 - It is often not required to specify initial values, as these are provided automatically by openBUGS.
 - However, the default initializations may be poor

openBUGS: estimation approach

- openBUGS estimates the posterior through Gibbs sampling and MH-sampling
- Several known conjugate posteriors are recognized, allowing Gibbs sampling directly from full conditionals
- MH proposals used for unknown full conditionals
- User can specify
 - Number of MCMC chains (potentially with different initial values)
 - Total number of iterations and burn-in
 - Thinning number *I* This will select every *I*'th draw for posterior inference

openBUGS: output

- Output for posterior inference:
 - Percentiles, summary statistics, and MCMC error for posterior draws
 - Kernel density estimates based on posterior draws
- Output for MCMC diagnostics:
 - Trace plots of mcmc draws ('history' option gives full chain)
 - Acceptance rate
 - Autocorrelation plots
- Output for model assessment:
 - Deviance information criterion (DIC) will discuss this more later!

openBUGS screenshots

- Specify model, etc. in editor
- \bullet Select Model \rightarrow Specification, then check, load, and compile model
 - Highlight relevant portion of text before each button

I	🔐 untitled1					
1	modelí		Specification Tool			
	for(i in 1:5){ y[] ~ dnorm(mu, Prec) #2nd parameter is precision, NOT variance		check model load dat			
) mu~dfiak())		compile	num of chains 1		
	list(Prec=0.5, y=c(2.6,1.2,-0.4,3.7,3.1))		load inits	for chain	÷	
	list(mu=0)		gen inits			
l		100				
I						

openBUGS screenshots

- For estimation select Model→Update Tool and Inference→Sample Monitor Tool
- Sample Monitor allows you to specify nodes (variables to track) and create output, Update Tool actually runs the MCMC

Update Tool		Sample Monitor Tool	
updates 10000 refresh 100	node 📶	chains 1 to 1 percentile	es
update thin 1 iteration 10000	beg 1 end	10000 thin 1 5	
🗖 adaptinç 🗖 over rela>		diagnostics 25 median 75	
2500 5000 750		trace Jump 90 95	
iteration	stats density	bgr diag history accept 97.5	
	coda	quantilesauto cor	

openBUGS screenshots

• Output:

- Flour beetles are exposed to a toxic substance at 4 different concentrations¹
- Let x_i be the log-concentration for $i = 1, \ldots, 4$
- \triangleright n_i is the number of beetles exposed at concentration i
- ▶ y_i is the number of beetles who die
- Model:

$$y_i \mid \theta_i \sim \text{Binomial}(\theta_i, n_i)$$
$$\log\left(\frac{\theta_i}{1 - \theta_i}\right) = \alpha + \beta x_i$$
$$p(\alpha, \beta) = 1 \times \text{Normal}(\beta \mid 0, 1000)$$

¹Example and data inspired by http://math.tut.fi/~piche/bayes/winbugs_lecture.pdf PUBH 8442: Bayes Decision Theory and Data Analysis Bayesian estimation software • Given data:

Xi	ni	Уi
-0.863	5	0
-0.296	5	1
-0.053	5	3
0.727	5	5

• We are interested in LD50, the log-concentration at which 50% of beetles die

$$LD50 = -\frac{\alpha}{\beta}$$

• Estimate in openBUGS, running MCMC from two different initializations

```
• BUGS code:
```

```
model{
  for(i in 1:nx){
    logit(theta[i]) <- alpha+beta*x[i]</pre>
   y[i] \sim dbin(theta[i],n[i])
 }
 alpha \sim dflat()
 beta \sim dnorm(0, 0.001)
 LD50 <- -alpha/beta }
#data
list(y=c(0,1,3,5), n=c(5,5,5,5), x=c(-0.863,-0.296,-0.53,0.727), nx=4)
\#init 1:
list(alpha=0, beta=0)
\#init 2:
list(alpha=0,beta=5)
```

• Output:

PUBH 8442: Bayes Decision Theory and Data Analysis Bayesian estimation software

• Output:

• Estimated LD50 is -0.2744, with 95% credible interval $LD50 \in (-0.5529, 0.1503)$

• Output:

🐮 Node statistics									
LD50 alpha beta	mean -0.2744 1.586 5.245	sd 0.2554 1.198 2.437	MC_error 0.003445 0.04394 0.09425	val2.5pc -0.5529 -0.3457 1.644	median -0.2977 1.441 4.837	val97.5pc 0.1503 4.399 10.97	start 2000 2000 2000	sample 16002 16002 16002	

openBUGS doodle

- As an alternative to specifying model in BUGS syntax, the Doodle option can specify a hierarchical model graphically
- Example (http://web.engr.oregonstate.edu/~tgd/ classes/519/assignment1.html):

R to BUGS

- For tips in saving data in R to BUGS format check out 'FROM R to WinBugs' at http://www.public.iastate. edu/~alicia/stat544/software.htm [link broken]
- Also see the R2OpenBUGS package: https://cran. r-project.org/web/packages/R2OpenBUGS/index.html
- Another good alternative option is RJAGS: https://cran. r-project.org/web/packages/rjags/index.html
- See course website for additional resources