The Bias-Variance Tradeoff

PUBH 8442: Bayes Decision Theory and Data Analysis

Eric F. Lock UMN Division of Biostatistics, SPH elock@umn.edu

02/5/2025

PUBH 8442: Bayes Decision Theory and Data Analysis The Bias-Variance Tradeoff

A rule d(y) is unbiased if risk under a given θ ∈ Θ is minimized at θ

$$E_{\mathbf{y} \mid \theta} I(\theta', d(\mathbf{y})) \geq E_{\mathbf{y} \mid \theta} I(\theta, d(\mathbf{y}))$$

for all $\theta', \theta \in \Theta$.

► For
$$l(\theta, d(\mathbf{y})) = (\theta - d(\mathbf{y}))^2$$
, unbiased implies
 $E_{\mathbf{y} \mid \theta} d(\mathbf{y}) = \theta$.

▶ The *bias* of *d* is

$$E_{\mathbf{y}\mid\theta}d(\mathbf{y})-\theta.$$

Example: silly unbiased estimator

Let X be the number of times an event occurs in an hour

 $X \sim \text{Poisson}(\lambda).$

• Using X, estimate P(A), where A := no events in two hours:

$$P(A \mid \lambda) = e^{-2\lambda}.$$

► Would like an unbiased estimate for P(A) under squared loss: $E[d(X)] = e^{-2\lambda}.$

Example: silly unbiased estimator

- d is unbiased only if $d(X) = (-1)^X$
 - A ridiculous estimate!

• Let y_1, \ldots, y_n be iid with mean μ and variance σ^2

 \blacktriangleright Consider estimates for μ of the form

$$d_B(\mathbf{y}) = B\mu_0 + (1-B)\bar{y}$$

where $0 \le B \le 1$ is the "shrinkage factor".

This estimate has variance

$$(1-B)^2 \frac{\sigma^2}{n}$$

And it has bias

$$B(\mu_0 - \mu)$$

The bias-variance trade-off

▶ The frequentist risk under squared error loss for d_B is

$$egin{aligned} & R(\mu, d_B) = (1-B)^2 rac{\sigma^2}{n} + B^2 (\mu_0 - \mu)^2 \ &= Variance + Bias^2 \end{aligned}$$

- For B = 0, $d(\mathbf{y}) = \bar{y}$ is unbiased but maximizes variance
- For B = 1, $d(\mathbf{y}) = \mu_0$ has no variance but maximizes bias
- Ideal B depends on
 - ▶ σ^2 (larger $\sigma^2 \to B$ closer to 1)
 - ▶ n (larger $n \rightarrow B$ closer to 0)
 - ▶ Distance of μ from μ_0 (larger distance $\rightarrow B$ closer to 0)

• Given prior $p(\mu)$ for μ with mean μ_0 and variance τ^2 .

• The rule d_B that minimizes Bayes risk

$$r(p(\mu), d_B) = \int R(\mu, d_B) p(\mu) d\mu$$

has

$$\mathsf{B} = \frac{\sigma^2}{\sigma^2 + n\tau^2}.$$

Normal-normal model is a special case.

Homework