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Unbiased rules

I A rule d(y) is unbiased if risk under a given θ ∈ Θ is
minimized at θ

Ey | θ l(θ
′, d(y)) ≥ Ey | θ l(θ, d(y))

for all θ′, θ ∈ Θ.

I For l(θ, d(y)) = (θ − d(y))2, unbiased implies

Ey | θ d(y) = θ.

I The bias of d is
Ey | θd(y)− θ.
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Example: silly unbiased estimator

I Let X be the number of times an event occurs in an hour

X ∼ Poisson(λ).

I Using X , estimate P(A), where A := no events in two hours:

P(A) = e−2λ.

I Would like an unbiased estimate for P(A) under squared loss:

E [d(X )] = e−2λ.
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Example: silly unbiased estimator

d is unbiased only if d(X ) = (−1)X

A ridiculous estimate!
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The bias-variance trade-off

I Let y1, . . . , yn be iid with mean µ and variance σ2

I Consider estimates for µ of the form

dB(y) = Bµ0 + (1− B)ȳ

where 0 ≤ B ≤ 1 is the “shrinkage factor”.

I This estimate has variance

(1− B)2
σ2

n

I And it has bias
B(µ0 − µ)
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The bias-variance trade-off

I The frequentist risk under squared error loss for dB is

R(µ, dB) = (1− B)2
σ2

n
+ B2(µ0 − µ)2

= Variance + Bias2

I The “bias-variance trade-off”

I For B = 0, d(y) = ȳ is unbiased but maximizes variance

I For B = 1, d(y) = µ0 has no variance but maximizes bias

I Ideal B depends on

I σ2 (larger σ2 → B closer to 1)

I n (larger n→ B closer to 0)

I Distance of µ from µ0 (larger distance → B closer to 0)
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The bias-variance trade-off

I Given prior p(µ) for µ with mean µ0 and variance τ2.

I The rule dB that minimizes Bayes risk

r(p(µ), dB) =

∫
R(µ, dB)p(µ)dµ

has

B =
σ2

σ2 + nτ2
.

I Normal-normal model is a special case.

I Homework
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