Course Introduction

PUBH 8442: Bayes Decision Theory and Data Analysis

Eric F. Lock UMN Division of Biostatistics, SPH elock@umn.edu

01/22/2025

PUBH 8442: Bayes Decision Theory and Data Analysis Course Introduction

• Comprehensive introduction to Bayesian statistics.

- Specification, estimation, and model diagnosis.
- Philosophical and theoretical foundations
- Computing using R, BUGS/JAGS
- GOAL: to conceive of, conduct, and interpret Bayesian inference for a variety of statistical problems.

- Students are expected to have:
 - Some familiarity with computing (R, C, etc.)
 - An understanding of core theoretical statistics (STAT 5101-5102)
 - An understanding of linear models (PUBH 8401)
- Students should wish to gain a deep understanding of Bayesian inference.
- Alternatively, PUBH7440 teaches Bayesian analysis in less theoretical depth and with less prior knowledge assumed.

Work expectations

- Mid-term exam 20%
 - In class, in the middle of the semester
- Final exam : 30%
 - May 12th, 2025
- Final project: 20%
- Homework sets: 30%
 - Due every 1-2 weeks
 - Submitted via Canvas
 - Discussion allowed, not copying.

- Eric's office hours: 1-2pm Mondays in UOP 238 and Zoom
- Dipto (TA) office hours: 2-3 Fridays in UOP and via Zoom.

- Conceive of and perform a Bayesian analysis of real data.
- Potential datasets will be provided, or choose your own.
- 3-5 page written report
- Short (10 min) in class presentation

- Course material posted on website
 - http://ericfrazerlock.com/pubh8442.html
- Will reference relevant sections and chapters in various texts, and articles, but no required textbook.
- All required material will be in course notes
- Marked up notes (from a previous class) will be posted after lectures.

Week	Topics
1	Introduction to Bayes rule, Bayesian statistics and prior selection
2	Introduction to decision theory
3	Bayesian inference: interpreting posteriors, point estimation, and interval estimation
4	Bayesian inference: hypothesis testing, model comparison,
5	More on model comparison and Bayes factors; multiplicity
6	Bayesian hierarchical modeling and the Bayesian linear model
7	Empirical Bayes Methods
	MIDTERM
8	Computing: asymptotic methods and approximations
9	Computing: exact sampling methods
10	Computing: Metropolis-Hastings, Gibbs sampler
11	More on MCMC; computing considerations for big data
12	Bayesian approaches to experimental design and clinical trials
13	Bayesian meta-analysis and model averaging
14	Bayesian mixture models and Bayesian nonparametrics
15	Research problems and case studies
	Final project due

The schedule below is tentative and subject to change.