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Example: Coke bottles (cont.)

◮ Recall:

◮ Coke bottles are filled with calibration Normal(12, 0.01)

◮ Given machine with calibration µ, bottles filled with
Normal(µ, 0.05)

◮ For n = 5, p(µ | y) = Normal( 12 (12 + ȳ), 0.005)

◮ A machine with calibration µ costs the company

$50000(µ− 12)2

◮ The cost to re-calibrate a machine to µ = 12 is $500

◮ Decide whether to re-calibrate after sample of n = 5
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Example: Coke bottles room (cont.)

◮ Decision theoretic framework:

◮ prior distribution: p(µ) = Normal(12, 0.01), µ ∈

◮ sampling distribution: {yi}5i=1
iid∼ Normal(µ, 0.05), y ∈ 5

◮ allowable actions:

A = {Re-calibrate(R),Do not re-calibrate(N)}

◮ loss function:

l(µ, a) =

󰀫
500 if a = R

50000(µ− 12)2 if a = N

◮ decision rule: d(y) =?
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Example: Coke bottles room (cont.)

The posterior risk for not recalibrating is

ρ(pθ,N) = 250 + 12500(ȳ − 12)2
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Example: Coke bottles room (cont.)

ρ(pθ,N) < ρ(pθ,R) = 500 when ȳ ∈ (11.86, 12.14)

The Bayes decision rule is

d(y) =

󰀫
Do not recalibrate if ȳ ∈ (11.86, 12.14)

Recalibrate if ȳ /∈ (11.86, 12.14)
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Frequentist hypothesis testing

◮ Two possible hypotheses involving θ: the null (H0) and
alternative (Ha)

◮ Observe data y, and assume Y and y are iid given θ

◮ The p-value is the probability that Y are more “extreme” than
y, under H0:

p-value = P(Y more “extreme” than y | H0)

◮ Y represents results that “could have” occurred under H0

◮ “Extreme” depends on context

◮ Probability always computed under H0, never Ha

◮ H0 is usually more specific: e.g., H0 : θ = θ0,Ha : θ ∕= θ0

◮ Small p-value is evidence against H0

PUBH 8442: Bayes Decision Theory and Data Analysis Decisions and Hypothesis Testing



Frequentist hypothesis testing

◮ p-value requires considering probability of other possible
outcomes, not just the observed outcome

◮ Therefore, it violates the Likelihood Principle:

◮ In making inferences or decisions about θ after y is observed,
all relevant experimental information is contained in the
likelihood function for the observed y.

◮ Two experiments can give data with different p-values but
equal likelihood under H0
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Example: tipping pennies

◮ Claim: If you stand a penny on its side and let it fall, it will
land heads more often than tails.

◮ Let θ = probability the penny lands heads

◮ H0 : θ = 1/2

◮ Ha : θ > 1/2

◮ Experiment 1: tip the coin until the penny lands tails

◮ Consider X : number of heads before first tail

◮ Experiment 2: tip the coin 6 times

◮ Consider Y : number of times penny falls heads
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Example: tipping pennies

◮ Given θ,

◮ X ∼ NegativeBinomial(1, θ)

◮ Y ∼ Binomial(6, θ)

◮ Assume for both experiments we observe 5 heads, then one
tail.

◮ Gives identical likelihoods:

P(X = 5 | θ) ∝ P(Y = 5 | θ) ∝ θ5(1− θ)
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Example: tipping pennies (cont.)

For experiment 1, p-value is P(X ≥ 5 | H0) = 0.031

For experiment 2, p-value is P(Y ≥ 5 | H0) = 0.110
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Bayesian hypothesis testing

◮ Could compute P(H0 | y) directly:

P(H0 | y) =
P(y | H0)P(H0)

P(y | H0)P(H0) + P(y | Ha)P(Ha)

◮ Must compute P(y | Ha) – requires prior for Ha

◮ Must specify P(H0), our prior probability of H0

◮ P(H0 | y) + P(Ha | y) = 1

◮ Symmetric: can give evidence for or against H0

◮ P-values can only give evidence against (never “accept H0”)
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Example: tipping pennies

◮ Possible Bayesian framework:

◮ Let θ = probability the penny lands heads

◮ H0 : θ = 1/2

◮ Ha : θ ∼ Uniform(0.5, 1)

◮ P(H0) = 0.5

◮ Our prior for θ is

θ ∼
󰀫
1/2 with probability 1/2

p(θ) = 2 for θ ∈ [0.5, 1] with probability 1/2
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Example: tipping pennies

◮ For experiment 1,

◮ P(x = 5 | H0) = (1/2)6

◮ P(x = 5 | Ha) ≈ 0.044

◮ So, P(H0 | x = 5) ≈ 0.267
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Example: tipping pennies

◮ For experiment 2,

◮ P(y = 5 | H0) = 6(1/2)6

◮ P(y = 5 | Ha) ≈ 0.264

◮ So, P(H0 | y = 5) ≈ 0.267
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Example: tipping pennies

◮ Posterior P(H0 | y = 5) as function of prior P(H0):

◮
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Code: http://www.ericfrazerlock.com/Decisions_and_
Hypothesis_Testing_Rcode1.r
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Bayesian hypothesis testing

◮ In general, if P(y | θ) ∝ P(x | θ), then

P(H0 | y) = P(H0 | x)

◮ Analogous result holds for continuous x,y with
p(y | θ) ∝ p(x | θ)

◮ Thus, Bayesian hypothesis testing satisfies the likelihood
principle
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