Decisions and Hypothesis Testing

PUBH 8442: Bayes Decision Theory and Data Analysis

Eric F. Lock
UMN Division of Biostatistics, SPH
elock@umn.edu
02/15/2021

Example: Coke bottles (cont.)

- Recall:
- Coke bottles are filled with calibration $\operatorname{Normal}(12,0.01)$
- Given machine with calibration μ, bottles filled with $\operatorname{Normal}(\mu, 0.05)$
- For $n=5, p(\mu \mid \mathbf{y})=\operatorname{Normal}\left(\frac{1}{2}(12+\bar{y}), 0.005\right)$
- A machine with calibration μ costs the company

$$
\$ 50000(\mu-12)^{2}
$$

- The cost to re-calibrate a machine to $\mu=12$ is $\$ 500$
- Decide whether to re-calibrate after sample of $n=5$

Example: Coke bottles room (cont.)

- Decision theoretic framework:
- prior distribution: $\quad p(\mu)=\operatorname{Normal}(12,0.01), \mu \in \mathbb{R}$
- sampling distribution: $\left\{y_{i}\right\}_{i=1}^{5} \stackrel{i i d}{\sim} \operatorname{Normal}(\mu, 0.05), \mathbf{y} \in \mathbb{R}^{5}$
- allowable actions:

$$
\mathcal{A}=\{\operatorname{Re} \text {-calibrate }(R), \text { Do not re-calibrate }(N)\}
$$

- loss function:

$$
I(\mu, a)= \begin{cases}500 & \text { if } a=R \\ 50000(\mu-12)^{2} & \text { if } a=N\end{cases}
$$

- decision rule: $d(y)=$?

Example: Coke bottles room (cont.)

- The posterior risk for not recalibrating is

$$
\begin{aligned}
E & :=E_{\mu / y} \quad \rho\left(p_{\theta}, N\right)=250+12500(\bar{y}-12)^{2} \\
& E\left(50000(\mu-12)^{2}\right)=50000 E(\mu-E \mu+E \mu-12)^{2} \\
& =50000\left[E(\mu-E \mu)^{2}+(E \mu-12)^{2}\right) \\
= & 50000\left[\operatorname{Vorr\mu } y(\mu)+\left(\frac{1}{2}(12+\bar{y})-12\right)^{2}\right] \\
= & 50000\left(0.005+0.25(\bar{y}-12)^{2}\right] \\
= & 250+12500(\bar{y}-12)^{2}
\end{aligned}
$$

Example: Coke bottles room (cont.)

- $\rho\left(p_{\theta}, N\right)<\rho\left(p_{\theta}, R\right)=500$ when $\bar{y} \in(11.86,12.14)$
$250+12 \operatorname{soo}(\bar{y}-12)^{2}<500$
$\rightarrow \bar{y} E(11.86,12,14)$
- The Bayes decision rule is

$$
d(\mathbf{y})= \begin{cases}\text { Do not recalibrate } & \text { if } \bar{y} \in(11.86,12.14) \\ \text { Recalibrate } & \text { if } \bar{y} \notin(11.86,12.14)\end{cases}
$$

Frequentist hypothesis testing

- Two possible hypotheses involving θ : the null $\left(H_{0}\right)$ and alternative $\left(H_{a}\right)$
- Observe data \mathbf{y}, and assume \mathbf{Y} and \mathbf{y} are iid given θ
- The p-value is the probability that \mathbf{Y} are more "extreme" than \mathbf{y}, under H_{0} :

$$
\text { p-value }=P\left(\mathbf{Y} \text { more "extreme" than } \mathbf{y} \mid H_{0}\right)
$$

- Y represents results that "could have" occurred under H_{0}
- "Extreme" depends on context
- Probability always computed under H_{0}, never H_{a}
- H_{0} is usually more specific: e.g., $H_{0}: \theta=\theta_{0}, H_{a}: \theta \neq \theta_{0}$
- Small p-value is evidence against H_{0}

Frequentist hypothesis testing

- p-value requires considering probability of other possible outcomes, not just the observed outcome
- Therefore, it violates the Likelihood Principle:
- In making inferences or decisions about θ after \mathbf{y} is observed, all relevant experimental information is contained in the likelihood function for the observed \mathbf{y}.
- Two experiments can give data with different p-values but equal likelihood under H_{0}

Example: tipping pennies

- Claim: If you stand a penny on its side and let it fall, it will land heads more often than tails.
- Let $\theta=$ probability the penny lands heads
- $H_{0}: \theta=1 / 2$
- $H_{a}: \theta>1 / 2$
- Experiment 1: tip the coin until the penny lands tails
- Consider X : number of heads before first tail
- Experiment 2: tip the coin 6 times
- Consider Y : number of times penny falls heads

Example: tipping pennies

- Given θ,
- $X \sim$ NegativeBinomial $(1, \theta) \rightarrow \theta^{X}(1-\theta)$
- $Y \sim \operatorname{Binomial}(6, \theta) \quad\binom{\sigma}{y} \theta^{Y}(1-\theta)$
- Assume for both experiments we observe 5 heads, then one tail.
- Gives identical likelihoods:

$$
P(X=5 \mid \theta) \propto P(Y=5 \mid \theta) \propto \theta^{5}(1-\theta)
$$

Example: tipping pennies (cont.)

- For experiment 1 , p-value is $P\left(X \geq 5 \mid H_{0}\right)=0.031$

$$
\begin{aligned}
& =P\left(x=5 \left\lvert\, \frac{1}{2}\right.\right)+P\left(x=6 \left\lvert\, \frac{1}{2}\right.\right)+\ldots \\
& =\left(\frac{1}{2}\right)^{s}\left(1-\frac{1}{2}\right)+\left(\frac{1}{2}\right)^{6}\left(1-\frac{1}{2}\right)+\ldots . . \\
= & \left(\frac{1}{2}\right)^{6}+\left(\frac{1}{2}\right)^{7}+\ldots=\left(\frac{1}{2}\right)^{5} \frac{\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\ldots\right)}{1}
\end{aligned}
$$

- For experiment 2, p-value is $P\left(Y \geq 5 \mid H_{0}\right)=0.110$

$$
\begin{aligned}
& p\left(y=s\left(\frac{1}{2}\right)+p\left(y=61 \frac{1}{2}\right)\right. \\
= & 6 \cdot\left(\frac{1}{2}\right)^{s}\left(1-\frac{1}{2}\right)+(1 / 2)^{6}=0.110
\end{aligned}
$$

Bayesian hypothesis testing

- Could compute $P\left(H_{0} \mid \mathbf{y}\right)$ directly:

$$
P\left(H_{0} \mid \mathbf{y}\right)=\frac{P\left(\mathbf{y} \mid H_{0}\right) P\left(H_{0}\right)}{P\left(\mathbf{y} \mid H_{0}\right) P\left(H_{0}\right)+P\left(\mathbf{y} \mid H_{a}\right) P\left(H_{a}\right)}
$$

$\theta\left(H_{0}\right)=1-P\left(H_{0}\right.$

- Must compute $P\left(\mathbf{y} \mid H_{a}\right)$ - requires prior for H_{a}
- Must specify $P\left(H_{0}\right)$, our prior probability of H_{0}
- $P\left(H_{0} \mid \mathbf{y}\right)+P\left(H_{a} \mid \mathbf{y}\right)=1$
- Symmetric: can give evidence for or against H_{0}
- P-values can only give evidence against (never "accept H_{0} ")

Example: tipping pennies

- Possible Bayesian framework:
- Let $\theta=$ probability the penny lands heads
- $H_{0}: \theta=1 / 2$
- $H_{a}: \theta \sim \operatorname{Uniform}(0.5,1)$
- $P\left(H_{0}\right)=0.5$
- Our prior for θ is

$$
\theta \sim \begin{cases}1 / 2 & \text { with probability } 1 / 2 \\ p(\theta)=2 \text { for } \theta \in[0.5,1] & \text { with probability } 1 / 2\end{cases}
$$

Example: tipping pennies

- For experiment $1, \rightarrow=\left(\frac{1}{2}\right)^{5}\left(1-\frac{1}{2}\right)=\left(\frac{1}{2}\right)^{6}$

$$
\left.\left.\left.\begin{array}{rl}
P\left(x=5 \mid H_{0}\right)=(1 / 2)^{6} \\
* P\left(x=5 \mid H_{2}\right) & \approx 0.044 \\
\int_{0.5}^{1} P(\theta) & P(x
\end{array}\right)=S \mid \theta\right) d \theta=\int_{0.5}^{1} 2 \cdot \theta^{s}(1-\theta) d \theta\right)
$$

So, $P\left(H_{0} \mid x=5\right) \approx 0.267$

$$
\begin{aligned}
& \rightarrow \frac{\left(\frac{1}{2}\right)^{0 .} \cdot \frac{1}{2}}{\left(\frac{1}{2}\right)^{6}\left(\frac{1}{2}\right)+0.044\left(\frac{1}{2}\right)}
\end{aligned}
$$

Example: tipping pennies

- For experiment 2,
- $P\left(y=5 \mid H_{0}\right)=6(1 / 2)^{6}$
- $P\left(y=5 \mid H_{a}\right) \approx 0.264$
$\left(\int_{0,5}^{1} 2 \cdot 6 \cdot \theta^{s}(i-\theta) d \theta\right.$
$=\ldots=0.269$
- So, $P\left(H_{0} \mid y=5\right) \approx 0.267$

Example: tipping pennies

- Posterior $P\left(H_{0} \mid y=5\right)$ as function of prior $P\left(H_{0}\right)$:

Code: http://www.ericfrazerlock.com/Decisions_and_ Hypothesis_Testing_Rcode1.r

Bayesian hypothesis testing

$$
P\left(y \mid H_{0}\right)=C \cdot P\left(x \mid H_{0}\right)
$$

- In general, if $P(\mathbf{y} \mid \theta) \propto P(\mathbf{x} \mid \theta)$, then $P\left(g \mid H_{\sigma}\right)=C \cdot P\left(X \mid H_{0}\right)$
$P\left(H_{0} \mid \mathbf{y}\right)=P\left(H_{0} \mid \mathbf{x}\right)$

$$
\begin{aligned}
& P\left(H_{0} \mid y\right)=\frac{X \cdot P\left(x \mid H_{0}\right) \cdot P\left(H_{0}\right)}{C \text { Analogous result holds for continuous }\left(X, f_{0}\right) \cdot P\left(H_{0}\right)+\gamma \cdot f} \text { with }
\end{aligned}
$$

$$
p(\mathbf{y} \mid \theta) \propto p(\mathbf{x} \mid \theta)
$$

$$
=f\left(t_{1} \mid x\right)
$$

- Thus, Bayesian hypothesis testing satisfies the likelihood principle

