Deviance Information Criterion

PUBH 8442: Bayes Decision Theory and Data Analysis

Eric F. Lock
UMN Division of Biostatistics, SPH
elock@umn.edu

04/10/2024

BIC and AIC

- Define the deviance function for a model with parameters θ :

$$
D(\theta)=-2 \log p(\mathbf{y} \mid \theta)
$$

- Recall: Bayesian information criterion

$$
B I C: D(\hat{\theta})+p \log n
$$

- $\hat{\theta}$ is the maximum likelihood estimate
- p is model dimension, $\theta=\left(\theta_{1}, \ldots, \theta_{p}\right)$,
- n is sample size, $\mathbf{y}=y_{1}, \ldots, y_{n}$
- Motivated by asymptotic approximation of Bayes factor
- Akaike information criterion

$$
A I C=D(\hat{\theta})+2 p
$$

- Motivated by asymptotic approximation to Kullback-Leibler divergence

BIC and AIC

- What if choice of p and n is not clear?
- This is common in Bayesian hierarchical models.
- Example: Consider the multi-level normal model

$$
\begin{aligned}
& \left.y_{i j} \sim \operatorname{Normal}\left(\theta_{i}, \sigma^{2}\right)\right\} \text { for } i=1, \ldots, m \text { and } j=1, \ldots, n_{i} \\
& \left.\qquad \theta_{i} \sim \operatorname{Normal}\left(\mu, \tau^{2}\right)\right\}
\end{aligned}
$$

- If θ_{i} are all nearly identical $\left(\tau^{2} \rightarrow 0\right)$, model depends only on estimation of $\mu(p \approx 1)$
- If θ_{i} are estimated independently $\left(\tau^{2} \rightarrow \infty\right), p \approx m$ makes sense.
- The choice of "sample size" is similarly unclear

Effective number of parameters

- Define the effective number of parameters by

$$
p_{D}=E_{\theta \mid \mathbf{y}} D(\theta)-D(\hat{\theta})
$$

where typically $\hat{\theta}=E_{\theta \mid \mathbf{y}} \theta$.

- The "expected" deviance minus the "fitted" deviance
- Higher p_{D} implies more over-fitting with estimate $\hat{\theta}$
- For a non-hierarchical model, the Bayesian CLT implies $p \approx p_{D}$ for large n

Deviance information criteria

- The Deviance information criteria (DIC) is

$$
D I C=E_{\theta \mid \mathrm{y}} D(\theta)+p_{D}
$$

- Approximates AIC for a non-hierarchical model
- Similar asymptotic justification as AIC
- Used for model comparison
- Lower DIC values are better
- Can estimate DIC from posterior samples:

$$
D I C=2 \bar{D}-D(\bar{\theta})
$$

where $\bar{\theta}=\frac{1}{N} \sum_{t=1}^{N} \theta^{(t)}$,

$$
\bar{D}=\frac{1}{N} \sum_{t=1}^{N}-2 \log p\left(\mathbf{y} \mid \theta^{(t)}\right)
$$

DIC comments

- DIC values are not very informative on their own
- Used for comparisons
- Includes a "goodness-of-fit" term $D(\hat{\theta})$ with a penalty for "complexity" (p_{D})
- Like BIC, AIC, and other model selection criteria
- More appropriate for hierarchical models than AIC, BIC
- p_{D} can be negative if $D(\bar{\theta})$ is relatively large.
- Implies Bayesian CLT does not hold and $\bar{\theta}$ is a poor estimate
- Compute in winBUGS and openBUGS: http: //www.openbugs.net/Manuals/InferenceMenu.html

Example: gene testing

- 40 mice are given a given a dose of alcohol, 40 are kept as control
- Expression levels are subsequently measured for 500 genes in liver
- $Y_{i j}^{g}$ is expression level for gene i, mouse j, group g
- Measurements are normally distributed with variance 1 :

$$
Y_{i j}^{g} \sim \operatorname{Normal}\left(\mu_{i}^{g}, 1\right)
$$

- Consider the group differences

$$
Y_{i}^{\text {diff }}=\bar{Y}_{i}^{\text {alc }}-\bar{Y}_{i}^{\text {con }} \sim \operatorname{Normal}\left(\mu_{i}^{\text {alc }}-\mu_{i}^{\text {con }}, \frac{1}{20}\right)
$$

Example: gene testing

- We are interested in effect of alcohol on each gene i :

$$
\mu_{i}^{\text {diff }}=\mu_{i}^{\text {alc }}-\mu_{i}^{\text {con }}
$$

- Use normal prior for effects:

$$
\mu_{i}^{\text {diff }} \stackrel{i i d}{\sim} \operatorname{Normal}\left(0, \tau^{2}\right)
$$

- Jeffrey's prior for effect variance:

$$
p\left(\tau^{2}\right) \propto \frac{1}{\tau^{2}}
$$

- Full distribution for $y_{i}^{\text {diff }} \mathrm{s}$:

$$
\frac{1}{\tau^{2}} \prod_{i=1}^{500} N\left(\mu_{i}^{\text {diff }} \mid 0, \tau^{2}\right) N\left(y_{i}^{\text {diff }} \mid \mu_{i}^{\text {diff }}, 1 / 20\right)
$$

Example: gene testing

- Gibbs sample conditionals for $\mu_{i}^{\text {diff }} s$ and τ^{2} :

$$
\begin{gathered}
p\left(\mu_{i}^{\text {diff }} \mid \tau^{2}, \mathbf{y}\right)=\text { Normal }\left(\frac{\tau^{2} y_{i}^{\text {diff }}}{\tau^{2}+1 / 20}, \frac{(1 / 20) \tau^{2}}{\tau^{2}+1 / 20}\right) \\
p\left(\tau^{2} \mid \mu^{\text {diff }}, \mathbf{y}\right)=I G\left(250, \frac{1}{2} \sum_{i=1}^{500} \mu_{i}^{2}\right)
\end{gathered}
$$

- Initialize $\tau^{2}=1 / 20$, run 10000 iterations with 2000 burn-in
- Compute

$$
D\left(\mu^{\text {diff }}, \tau^{2}\right)=-2 \sum_{i=1}^{500} \log \left[N\left(y_{i}^{\text {diff }} \mid \mu_{i}^{\text {diff }}, 1 / 20\right)\right]
$$

at each iteration.

```
\(\mathrm{T}=10000\)
BurnIn = 2000
\(\mathrm{N}=\mathrm{T}\)-BurnIn
draws_tau_2 = rep(0,T)
draws_mu_diff = matrix(nrow = T, ncol = 500)
Ds \(=\operatorname{rep}(0, T)\)
tau_2 = 1/20 \#\#\# initialize
for (t in 1:T) \{ \#\#Run gibbs sampler
    mus \(=\) rnorm(500, tau_2*y_diffs/(tau_2+0.05),
                                    sqrt(0.05*tau_2/tau_2+0.05)))
    tau_2 =1/rgamma(1,250, 0.5*sum(mus^2))
    draws_tau_2[t] = tau_2
    draws_mu_diff[t,] = mus
    Ds [t] \(=-2 * \operatorname{sum}(\log (\) dnorm(y_diffs,mus,sqrt(0.05))))
\}
```


Example: gene testing

- Gibbs draws for τ^{2} :

http://www.ericfrazerlock.com/Deviance_Information_Criteria_ Rcode1.R

Example: gene testing

- Gibbs draws for $\mu_{\text {diff }}$, three genes:

http://www.ericfrazerlock.com/Deviance_Information_Criteria_ Rcode1.R

Example: gene testing

- Plot of deviance over Gibbs draws

R CODE

\#\#\#compute DIC
mean_mus = colMeans(draws_mu_diff[2001:T,])
D_mean $=-2 * \operatorname{sum}\left(\log \left(d n o r m\left(y _d i f f s, m e a n _m u s, s q r t(0.05)\right)\right)\right)$
p_d = mean(Ds[2001:T])-D_mean
DIC $=2 *$ mean (Ds[2001:T])-D_mean
DIC_null $=-2 * \operatorname{sum}\left(\log \left(d n o r m\left(y _d i f f s, 0, s q r t(0.05)\right)\right)\right)$

Example: gene testing

- The deviance for $\hat{\mu}^{\text {diff }}$, the mean vector over draws, is

$$
D\left(\hat{\mu}^{\text {diff }}\right)=-422.7
$$

- Thus $p_{D}=\bar{D}-D\left(\hat{\mu}^{\text {diff }}\right)=344.9$
- DIC is $D I C=\bar{D}+p_{D}=267.1$
- Consider the null model $\mu_{i}^{\text {diff }}=0 \forall i$
- The effective number of parameters is $p_{D}=0$
- DIC is

$$
\text { DIC }=-2 \sum_{i=1}^{500} \log \left[N\left(y_{i}^{\text {diff }} \mid 0,1 / 20\right)\right]=1029
$$

- Evidence there are alcohol effects (for at least some genes)

Example: gene testing

- Consider a third model, that allows "no effect" for some genes.
- P_{1} is shared probability that $\mu_{i}^{\text {diff }} \neq 0$ for a given gene:

$$
\mu_{i}^{\text {diff }} \sim\left\{\begin{array}{l}
0 \text { with probability } 1-P_{1} \\
N\left(0, \tau^{2}\right) \text { with probability } P_{1}
\end{array}\right.
$$

- Again, $p\left(\tau^{2}\right)=1 / \tau^{2}$
- Use a uniform prior for P_{1}

$$
P_{1} \sim \operatorname{Beta}(1,1)
$$

- Let $\zeta_{i}=\mathbb{1}\left\{\mu_{i}^{\text {diff }} \neq 0\right\}$

Gibbs sampling

- Draw from conditional for $\left(\zeta, \mu^{\text {diff }}\right)$ for each gene i :
- Draw $\zeta_{i} \in\{0,1\}$ by

$$
P\left(\zeta_{i}=1 \mid \mathbf{y}, \tau^{2}, P_{1}\right)=\frac{P_{1} N\left(y_{i}^{\text {diff }} \mid 0, \tau^{2}+\frac{1}{20}\right)}{P_{1} N\left(y_{i}^{\text {diff }} \mid 0, \tau^{2}+\frac{1}{20}\right)+\left(1-P_{1}\right) N\left(y_{i}^{\text {diff }} \mid 0, \frac{1}{20}\right)}
$$

- If $\zeta_{i}=0$, set $\mu_{i}^{\text {diff }}=0$
- Otherwise, generate $\mu_{i}^{\text {diff }} \sim \operatorname{Normal}\left(\frac{\tau^{2} y_{i}^{\text {dif }}}{\tau^{2}+1 / 20}, \frac{(1 / 20) \tau^{2}}{\tau^{2}+1 / 20}\right)$
- Draw τ^{2} from $P\left(\tau^{2} \mid \mu^{\text {diff }}, \mathbf{y}, \zeta\right)=I G\left(\frac{1}{2} \sum \zeta_{i}, \frac{1}{2} \sum \zeta_{i} \mu_{i}^{\text {diff }}\right)$
- Draw P_{1} from

$$
P\left(P_{1} \mid \mathbf{y}, \zeta, \mu, \tau^{2}\right)=\operatorname{Beta}\left(1+\sum \zeta_{i}, 1+500-\sum \zeta_{i}\right)
$$

Example: gene testing

- Gibbs draws for P_{1} :

- Estimate $\approx 21 \%$ of genes show an alcohol effect

Example: gene testing

- Gibbs draws for τ^{2} :

Example: gene testing

- Gibbs draws for $\mu^{\text {diff }}$, three genes:

- Estimated probability of an effect for the red gene: 0.06
- For the blue gene: 0.12
- For the black gene: 0.99

Example: gene testing

$-p_{D}$ for the present model is 179.8

- DIC is 106.57
- Suggests this is a good compromise between
- Null model $($ DIC $=1029)$
- Model with an effect in every gene ($D I C=267.1$)

