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BIC and AIC

» Define the deviance function for a model with parameters 0:
D(0) = —2log p(y | 0)

» Recall: Bayesian information criterion
BIC : D(0) + plogn

» 0 is the maximum likelihood estimate

» p is model dimension, 6 = (61,...,0,),

» nis sample size, Yy = y1,...,¥n

» Motivated by asymptotic approximation of Bayes factor

» Akaike information criterion
AIC = D(A) + 2p

» Motivated by asymptotic approximation to Kullback-Leibler
divergence
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BIC and AIC

» What if choice of p and n is not clear?
» This is common in Bayesian hierarchical models.

» Example: Consider the multi-level normal model
Yij ~ Norma|(9,-,02)} fori=1,....mandj=1,...,n;

6; ~ Normal(p, 7°)}

» If 6; are all nearly identical (72 — 0), model depends only on
estimation of u (p ~ 1)

» If 0; are estimated independently (72 — 00), p &~ m makes
sense.

» The choice of “sample size” is similarly unclear
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Effective number of parameters

» Define the effective number of parameters by
pp = E5,D(8) — D(D)

where typically 6= Ep | y0.

» The “expected” deviance minus the “fitted” deviance

» Higher pp implies more over-fitting with estimate 6

» For a non-hierarchical model, the Bayesian CLT implies
p =~ pp for large n
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Deviance information criteria

» The Deviance information criteria (DIC) is

DIC = Eq|,D(0) + pp — D(é)+2 £,

» Approximates AlIC for a non-hierarchical model -
» Similar asymptotic justification as AlC - lEeU ch)

a
» Used for model comparison '—_O (@)

» Lower DIC values are better

» Can estimate DIC from posterior samples:
DIC = 2D — D(f)

where 6 = % > ivzl o),
L
5 ¢
D=4 ;1 —2log p(y | 69)
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DIC comments

» DIC values are not very informative on their own

» Used for comparisons A
pE

» Includes a “goodness-of-fit” term_,BQmith a penalty for
“complexity” (pp)

» Like BIC, AIC, and other model selection criteria

» More appropriate for hierarchical models than AIC, BIC

» pp can be negative if D(6) is relatively large.

» Implies Bayesian CLT does not hold and @ is a poor estimate

» Compute in winBUGS and openBUGS: http:
//www.openbugs.net/Manuals/InferenceMenu.html
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Example: gene testing

» 40 mice are given a given a dose of alcohol, 40 are kept as
control

» Expression levels are subsequently measured for 500 genes in
liver

g . . . .
> Y,-J- is expression level for gene i, mouse j, group g

» Measurements are normally distributed with variance 1:

g g
Y;; ~ Normal(y7,1)
» Consider the group differences

1
ydlff yalc Ycon ~ Normal aIc Iulcon 2O>

N(’b\c/ qo N(. k/l’\(‘B
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Example: gene testing

» We are interested in effect of alcohol on each gene i:

diff alc con

/’LI - :ul /"LI

» Use normal prior for effects:
diff iid N
Iy ormal(0, 72)

» Jeffrey's prior for effect variance:

P(Tz) X 2

» Full distribution for yd'fF

500
5 H N 0, 72N | 18, 1/20)
\—
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Example: gene testing

diffs and 72:

TPyf o (1/20)72
241/20" 72 +1/20

» Gibbs sample conditionals for s

p(uf™ | 7%, y) = Normal (

2 dlff 7500
p(r* | ™, y) = IG | 250, Zu

» Initialize 72 = 1/20, run 10000 iterations with 2000 burn-in
» Compute

500
D( dlff — _2Z|0g[N diff ’ M diff 1/20)]

at each iteration.
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R CODE

T=10000
BurnIn = 2000
N=T-BurnIn

draws_tau_2 = rep(0,T)
draws_mu_diff = matrix(nrow = T, ncol = 500)
Ds = rep(0,T)
tau_2 = 1/20 ### initialize
for(t in 1:T){ ##Run gibbs sampler
mus = rnorm(500, tau_2*y_diffs/(tau_2+0.05),
sqrt (0.05*%tau_2/tau_2+0.05)))
tau_2 =1/rgamma(1,250, 0.5*sum(mus~2))
draws_tau_2[t] = tau_2
draws_mu_diff[t,] = mus
Ds[t] = -2*sum(log(dnorm(y_diffs,mus,sqrt(0.05))))
}
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Example: gene testing

e Gibbs draws for 72:

draws_tau_2
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http://www.ericfrazerlock.com/Deviance_Information_Criteria_
Rcodel.R
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Example: gene testing

@ Gibbs draws for g, three genes:
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Example: gene testing

@ Plot of deviance over Gibbs draws
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R CODE

###compute DIC

mean_mus = colMeans(draws_mu_diff[2001:T,])

D_mean = -2*sum(log(dnorm(y_diffs,mean_mus,sqrt(0.05))))
p_d = mean(Ds[2001:T])-D_mean

DIC = 2*mean(Ds[2001:T])-D_mean

DIC_null = -2*sum(log(dnorm(y_diffs,0,sqrt(0.05))))
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Example: gene testing

» The deviance for ﬁ‘“ﬁ, the mean vector over draws, is

D(p4f) = —422.7

» Thus pp = D — D(pf) = 344.9
» DICis DIC = D+ pp = 267.1

» Consider the null model ,uj-“ff =0V

» The effective number of parameters is pp = 0
» DICis

500
DIC = -2 " log[N(y{"" | 0,1/20)] = 1029
i=1

» Evidence there are alcohol effects (for at least some genes)
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Example: gene testing

» Consider a third model, that allows “no effect” for some
genes.

» P; is shared probability that ,u‘,-jiff # 0 for a given gene:

Mdiff N 0 with probability 1 — P4
’ N(0,72) with probability P;

» Again, p(72) = 1/72

» Use a uniform prior for Py

P; ~ Beta(1,1)
> Let ¢; = 1{udf £ 0}
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Gibbs sampling

» Draw from conditional for (¢, u4ff) for each gene i: N\
& o
» Draw ¢; € {0,1} by /CL %_‘/ t

1\
m 4| 0,72 +210)

P =1 7T P
(¢ ly 1) = PiN(y dufF|07-2 20)+(1—P1) (s |ff|0,20)

» If (i =0, set ,u‘,?“ff =0

T2yd(1/20)72
724+1/20° 72+41/20

A
» Otherwise, generate ,u}*w Normal ( )
PN
» Draw 72 from P(72 | p@fy () = 1G (33 ¢iv 3 ZC,-[L?)-

» Draw P; from

P(PL|y,¢,p,7°) =Beta(1+ » ¢, 1+500— Y ()
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Example: gene testing

@ Gibbs draws for Py:
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o Estimate ~ 21% of genes show an alcohol effect
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Example: gene testing

e Gibbs draws for 72:
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Example: gene testing

o Gibbs draws for 9 three genes:

_difff, 500]
00 05 1.0

draws_mu_diff

-1.0
|

0 2000 4000 6000 8000 10000

Index

o Estimated probability of an effect for the red gene: 0.06
o For the blue gene: 0.12
o For the black gene: 0.99
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Example: gene testing

» pp for the present model is 179.8

» DIC is 106.57
» Suggests this is a good compromise between

» Null model (DIC = 1029)

» Model with an effect in every gene (DIC = 267.1)
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