Direct Sampling

PUBH 8442: Bayes Decision Theory and Data Analysis

Eric F. Lock
UMN Division of Biostatistics, SPH elock@umn.edu
03/20/2024

Simulating from pdf or pmf

- In statistics it is common to encounter integrals that are difficult to solve analytically.
- Computing expected values or variances
- Computing the normalizing constant for marginal distributions
- Finding probabilities when the cdf is unknown
- Encounter these issues often in Bayesian statistics....
- Monte Carlo simulation, in which observations are randomly generated from the model, is helpful to overcome this.

Direct Monte Carlo integration: expected value

- Assume $\theta \sim p(\theta)$, and consider the functional form $g(\theta)$
- e.g., p may be a posterior distribution $p(\theta \mid \mathbf{y})$
- Assume we can generate samples $\theta_{1}, \ldots, \theta_{N} \stackrel{\text { iid }}{\sim} p(\theta)$
- Using R (and other software) it is easy to generate from known distributions such as the Beta, Binomial, Poisson, Normal, or Gamma.
- Then, by the Law of Large Numbers,

$$
\int g(\theta) p(\theta) d \theta=E g(\theta) \approx \frac{1}{N} \sum_{j=1}^{N} g\left(\theta_{j}\right)
$$

for large N

Direct Monte Carlo integration: standard error

- Let $\hat{\gamma}=\frac{1}{N} \sum_{j=1}^{N} g\left(\theta_{j}\right)$.
- The variance of $g(\theta)$ under p can be approximated similarly:

$$
\operatorname{Var}(g(\theta)) \approx \frac{1}{N-1} \sum_{j=1}^{N}\left[g\left(\theta_{j}\right)-\hat{\gamma}\right]^{2}
$$

- We can derive the standard error for $\hat{\gamma}$ using $\operatorname{Var}(\hat{\gamma})=\operatorname{Var}(g(\theta)) / N:$

$$
\hat{s e}(\hat{\gamma})=\sqrt{\frac{1}{N(N-1)} \sum_{j=1}^{N}\left[g\left(\theta_{j}\right)-\hat{\gamma}\right]^{2}} .
$$

- This does NOT represent uncertainty of $g(\theta)$ implied by p
- It represents simulation uncertainty in our estimate for $\operatorname{Eg}(\theta)$
- Converges to 0 as we increase number of simulations N
- By Central Limit Theorem, $\hat{\gamma} \sim N\left(E(g(\theta)), \hat{s e}(\hat{\gamma})^{2}\right)$ for large N

Direct Monte Carlo integration

- Consider $g(\theta)=\mathbb{1}_{a<c(\theta)<b}$ for some function $c(\theta)$
- Then, $E g(\theta)=P(a<c(\theta)<b)$
- We can estimate this probability under simulation:

$$
\hat{p}=\frac{\text { number of } c\left(\theta_{j}\right) s \in(a, b)}{N}
$$

and our standard error for this estimate is $\sqrt{\hat{p}(1-\hat{p}) / N}$.

- Implication: a histogram of the $c\left(\theta_{j}\right) s$ approximates the density for $c(\theta)$.

Example: Eye exam

- An eye patient is asked to identify shapes from a given distance
- She is shown $n=20$ shapes
- Jeffreys beta-binomial model for number of shapes she identifies correctly:

$$
\begin{gathered}
y \sim \operatorname{Binomial}(20, \theta) \\
\theta
\end{gathered}
$$

- Assume she identifies 16 shapes correctly.
- $p(\theta \mid y)=\operatorname{Beta}(16.5,4.5)$

Example: Eye exam

- Consider the logit transformation $g(\theta)=\log \left(\frac{\theta}{1-\theta}\right)$.
- Approximate distribution of $g(\theta)$ induced by beta posterior.
- For $j=1, \ldots, N$:
- Simulate θ_{j} from $\operatorname{Beta}(16.5,4.5)$
- Compute $g\left(\theta_{j}\right)=\log \left(\frac{\theta_{j}}{1-\theta_{j}}\right)$
- Consider distribution of $g\left(\theta_{j}\right) s$ for $N=10000$ sims

Example: Eye exam

- The estimated posterior expected value is

$$
\frac{1}{10000} \sum_{j=1}^{N} g\left(\theta_{j}\right)=1.386
$$

- The estimated posterior variance is

$$
\frac{1}{N-1} \sum_{j=1}^{N}\left[g\left(\theta_{j}\right)-\hat{\gamma}\right]^{2}=0.310
$$

- The standard error for our estimate of $\operatorname{Eg}(\theta)$ is

$$
\sqrt{0.310 / 10000}=0.006
$$

- Approximate 95% confidence interval: $1.386 \pm 2 \cdot 0.006$

Example: Eye exam

- Estimated density of $g(\theta)$:

Histogram of g_theta_js

http://www.ericfrazerlock.com/Direct_Sampling_Rcode1.r

Direct sampling: multivariate density

- Let $\theta=\left(\theta_{1}, \ldots, \theta_{k}\right)$.
- Note that

$$
p\left(\theta_{1}, \ldots, \theta_{k}\right)=\prod_{i=1}^{k} p\left(\theta_{i} \mid \theta_{i-1}, \ldots, \theta_{1}\right)
$$

- We can draw direct samples $\tilde{\theta}$ from $p\left(\theta_{1}, \ldots, \theta_{k}\right)$ as follows:
- Draw $\tilde{\theta}_{1}$ from $p\left(\theta_{1}\right)$,
- Draw $\tilde{\theta}_{2}$ from $p\left(\theta_{2} \mid \tilde{\theta}_{1}\right)$,
- \ldots, draw $\tilde{\theta}_{k}$ from $p\left(\theta_{k} \mid \tilde{\theta}_{k-1}, \ldots, \tilde{\theta}_{1}\right)$.
- Useful for simulating difficult marginal densities
- $p\left(\theta_{1}\right)$ and $p\left(\theta_{2} \mid \theta_{1}\right)$ may be easy to obtain, but not $p\left(\theta_{2}\right)$
- Here $\tilde{\theta}_{2}$ is a draw from $p\left(\theta_{2}\right)$.

Example: Body Fat (cont.)

- Recall: \% body fat (BF\%) measured for 100 adult males.
- Also measured 9 predictor variables
- Age, Weight, Height; circumference of neck, chest, abdomen, ankle, bicep, and wrist.
- Consider the model

$$
\mathbf{y}=\beta X+\epsilon
$$

where

- \mathbf{y} is population-centered $B F \%$
- X is the standardized matrix of predictor variables

Example: Body Fat (cont.)

- Used iid normal prior for $\beta_{i}^{\prime} s$:

$$
\beta \sim \operatorname{Normal}\left(0,0.62 \sigma^{2} I\right)
$$

with $\hat{\tau}^{2}=0.62$ estimated empirically.

- $I G(3,20)$ prior for σ^{2}
- Gives the conditional posterior

$$
\begin{aligned}
& \qquad \qquad p\left(\beta \mid \mathbf{y}, \sigma^{2}\right)=\operatorname{Normal}\left(\tilde{\beta}, \sigma^{2} V_{\beta}\right) \\
& \text { where } \tilde{\beta}=\left(X^{T} X+\frac{1}{0.62}\right)^{-1}\left(X^{T} \mathbf{y}\right) \\
& \text { and } V_{\beta}=\left(X^{T} X+\frac{1}{0.62}\right)^{-1}
\end{aligned}
$$

Example: Body Fat (cont.)

- The marginal posterior for σ^{2} is

$$
p\left(\sigma^{2} \mid \mathbf{y}\right)=I G\left(a_{n}, b_{n}\right)
$$

where $a_{n}=3+\frac{100}{2}$ and
$b_{n}=20+\frac{1}{2}\left[\mathbf{y}^{T} \mathbf{y}-\tilde{\beta}^{T}\left(X^{T} X+\frac{1}{0.62} I\right)^{-1} \tilde{\beta}\right]$

- Direct sampling scheme:
- For samples $j=1, \ldots, N=10000$:
- Draw σ_{j} from $p\left(\sigma^{2} \mid \mathbf{y}\right)$
- Draw β_{j} from $p\left(\beta \mid \mathbf{y}, \sigma_{j}^{2}\right)$
http://www.ericfrazerlock.com/More_on_Direct_ Sampling_Rcode1.r

Example: Body Fat (cont.)

- Simulated marginal posterior of Age coefficient β_{1} :

Histogram of beta_sims[1,]

- 95% credible interval from simulations: $(0.152,2.220)$
- 95\% credible interval from t-dist: $(0.157,2.229)$

Example: Body Fat (cont.)

- Scatterplot of simulated coefficients for Age β_{1} and Wrist β_{2} :

http:
//www.ericfrazerlock.com/More_on_Direct_Sampling_Rcode1.r

Example: Body Fat (cont.)

- Assume an individual has the following standardized measurements:
- Age: 1.20, Weight:0.5, Height:-0.4; circumference of neck:2.2, chest:0.3, abdomen:0.8, ankle:0.2, bicep:0.3, and wrist:0.6.
- Denote his vector of predictors as \mathbf{x}_{101}
- Simulate from the posterior predictive for y_{101} :
- Draw σ_{j}, β_{j} as before
- Draw $y_{101, j}$ from $\operatorname{Normal}\left(\mathbf{x}_{101} \beta_{j}, \sigma_{j}\right)$

Example: Body Fat (cont.)

- Histogram of predicted body fat \% for individual 101:

Histogram of Predicted.BF

http:
//www.ericfrazerlock.com/More_on_Direct_Sampling_Rcode1.r

Example: Body Fat (cont.)

- Scatterplot of simulated predicted body fat for individual 101, and Neck coefficient β_{4} :

http:
//www.ericfrazerlock.com/More_on_Direct_Sampling_Rcode1.r

