Estimation, and Decision Theory

PUBH 8442: Bayes Decision Theory and Data Analysis

Eric F. Lock
UMN Division of Biostatistics, SPH
elock@umn.edu
02/01/2021

- Full posterior distribution $p(\theta \mid \mathbf{y})$ is nice...
- But often wish to simplify inference and conclusions
- Possible point estimates for θ :
- Posterior mode:

$$
\hat{\theta}=\operatorname{argmax}_{\theta} p(\theta \mid \mathbf{y})
$$

- Posterior expectation:

$$
\hat{\theta}=E_{\theta \mid \mathbf{y}} \theta=\int \theta p(\theta \mid \mathbf{y}) d \theta
$$

- Posterior median:

$$
P(\theta \leq \hat{\theta} \mid \mathbf{y})=\int_{-\infty}^{\hat{\theta}} p(\theta \mid \mathbf{y}) d \theta=\frac{1}{2}
$$

- Posterior mode
- Easy to compute because only need to work with numerator

$$
p(\theta \mid \mathbf{y}) \propto p(\theta) p(\mathbf{y} \mid \theta)
$$

- Sometimes called generalized maximum likelihood estimation
- Posterior expectation uses full posterior
- Posterior median is more robust to outliers in y \& posterior tails
- How to choose which estimate is optimal for a given application?

Loss function

- A loss function I(truth, a) gives the loss incurred for an action a given the (usually unknown) truth.
- Here "loss" is abstract - could be loss to society, loss in terms of model accuracy, etc.
- want to minimize loss
- If the truth is given by parameter θ, the posterior risk is

$$
P\left(P_{0,}, 0\right) E_{\theta \mid \mathbf{y}} I(\theta \mid a)=\int I(\theta \mid a) p(\theta \mid \mathbf{y}) d \theta
$$

- Averaging the loss over the posterior for θ
- For point estimation, our action a is given by an estimate $\hat{\theta}$: $I(\theta, \hat{\theta})$

Point estimate loss

- Squared error loss is commonly used

$$
I(\theta, \hat{\theta})=(\theta-\hat{\theta})^{2}
$$

- Posterior risk for squared error loss is minimized by posterior expectation:

$$
\begin{aligned}
& O\left(P_{\theta}, \hat{\theta}\right) \\
& E(\theta-\hat{\theta})^{2}=E\left(\theta-E \theta+E \theta-\operatorname{argmin}_{\hat{\theta}} E_{\theta \mid \mathbf{y}}(\theta-\hat{\theta})^{2}\right. \\
& \\
& \left.=-E(\theta-E \theta)^{2}+2(\theta-E \theta)(E \theta-\hat{\theta})+(E \theta-\hat{\theta})^{2}\right] \\
& = \\
& =E(\theta-E \theta)^{2}+0+(E \theta-\hat{\theta})^{2} \geq E(\theta-E \theta)^{2}=\rho\left(P_{0}, E \theta\right)
\end{aligned}
$$

- Posterior risk for absolute loss $I(\theta, \hat{\theta})=|\theta-\hat{\theta}|$ is minimized by the posterior median
- Homework

Decision rules

- Denote the space of allowable actions $\mathcal{A}(a \in \mathcal{A})$
- Denote sample space (possible data observations) $\mathcal{Y}(\mathbf{y} \in \mathcal{Y})$
- A decision rule $d \in \mathcal{D}: \mathcal{Y} \rightarrow \mathcal{A}$ is a rule for determining an action based on data.
- Formal decision-theoretic framework:
- prior distribution: $p(\theta), \theta \in \Theta$
- sampling distribution: $p(\mathbf{y} \mid \theta)$
- allowable actions: $a \in \mathcal{A}$
- decision rules: $d \in \mathcal{D}: \mathcal{Y} \rightarrow \mathcal{A}$
- loss function: I($\theta, a)$

Normal-normal point estimate

- Recall for y_{1}, \ldots, y_{n} iid $\operatorname{Normal}\left(\mu, \sigma^{2}\right)$ and $p(\mu)=\operatorname{Normal}\left(\mu_{0}, \tau^{2}\right):$

$$
p(\mu \mid \mathbf{y})=\operatorname{Normal}\left(\frac{\sigma^{2} \mu_{0}+n \tau^{2} \bar{y}}{\sigma^{2}+n \tau^{2}}, \frac{\sigma^{2} \tau^{2}}{\sigma^{2}+n \tau^{2}}\right)
$$

- Consider decision for point estimate of μ :
- prior distribution: $\quad p(\mu)=\operatorname{Normal}\left(\mu_{0}, \tau^{2}\right), \mu \in \mathbb{R}$
- sampling distribution: y_{1}, \ldots, y_{n} iid $\operatorname{Normal}\left(\mu, \sigma^{2}\right), \mathbf{y} \in \mathbb{R}^{n}$
- allowable actions: $a \in \mathcal{A}=\mathbb{R}$
- decision rule: $d(\mathbf{y})=\frac{\sigma^{2} \mu_{0}+n \tau^{2} \bar{y}}{\sigma^{2}+n \tau^{2}}$
- loss function: $I(\mu, a)=(\mu-a)^{2} \quad($ or $I(\mu, a)=|\mu-a|)$

Example: Coke bottles (cont.)

- Recall:
- Coke bottles are filled with calibration $\operatorname{Normal}(12,0.01)$
- Given machine with calibration μ, bottles filled with $\operatorname{Normal}(\mu, 0.05)$
- For $n=5$ and $\bar{y}=11.88$ oz, $p(\mu \mid \mathbf{y})=\operatorname{Normal}(11.94,0.005)$
- Action is to estimate $\hat{\mu}=11.94$
- Posterior risk under squared error loss is the posterior variance, 0.005

$$
=\int(\mu-\hat{\mu})^{2} p(\mu \mid y) d \mu
$$

$$
=\operatorname{Va} l_{\mu}(\mu)
$$

- The frequentist risk of a decision rule d is

$$
\begin{aligned}
R(\theta, d) & =E_{\mathbf{y} \mid \theta} I(\theta, d(\mathbf{y})) \\
& =\int I(\theta, d(\mathbf{y})) p(\mathbf{y} \mid \theta) d \mathbf{y}
\end{aligned}
$$

- Loss averaged over \mathbf{y}, given θ.
- Note: does not depend on prior $p(\theta)$
- A rule d is inadmissible if $\exists d^{*}$ with

$$
R\left(\theta, d^{*}\right) \leq R(\theta, d) \forall \theta \in \Theta
$$

and $<$ for some $\theta \in \Theta$

- Implies another rule is universally "better"
- A rule that is not inadmissible is admissible
- Admissible rules are not necessarily good

Example: Coke bottles (cont.)

- The (poor) rule $d(\mathbf{y})=5$ is admissible because it is unbeatable when $\mu=5!R(M, 5)=(M-S)^{2}$
- The rule $d(\mathbf{y})=\bar{y}$ has frequentist risk

$$
\begin{aligned}
R(\mu, \bar{y}) & =\operatorname{Var}_{y \mid \mu \bar{y}} \\
E_{y \mid \mu}^{(\eta}(\mu-\bar{y})^{2} & =\frac{\sigma^{2}}{n} \\
& =0.05 / 5=0.01
\end{aligned}
$$

- Does not depend on μ

Example: Coke bottles (cont.)

- Note: posterior mean has form $B \mu_{0}+(1-B) \bar{y}$, where

$$
B=\frac{\sigma^{2}}{\sigma^{2}+n \tau^{2}}
$$

- For coke example with $n=5, B=0.5$
- The posterior mean rule $d(\mathbf{y})=E_{\mu \mid \mathbf{y}} \mu$ has frequentest risk

$$
\begin{aligned}
& R\left(\mu, E_{\mu \mid \mathrm{y}} \mu\right)=B^{2}\left(\mu-\mu_{0}\right)^{2}+(1-B)^{2} \operatorname{Var}_{\mathbf{y} \mid \mu} \bar{y} \\
& =0.25(\mu-12)^{2}+0.0025 \\
& E_{y / \mu}\left(\mu-B \mu_{0}-(1-B) \bar{y}\right)^{2} \\
& =E\left(B\left(\mu-\mu_{0}\right)+(1-B)(\mu-\bar{y})\right]^{2} \\
& \left.=B^{2}\left(\mu-\mu_{0}\right)^{2}+(1-B)^{2} E(\mu-\bar{y})^{2}\right) \\
& +0
\end{aligned}
$$

Minimax rules

- A minimax rule d satisfies

$$
\sup _{\theta \in \Theta} R(\theta, d) \leq \sup _{\theta \in \Theta} R\left(\theta, d^{*}\right), \forall d^{*} \in \mathcal{D}
$$

- Chose d to minimize maximum risk.
- Prepare for "the worst case scenario"
- May not be unique, admissible, or favorable.

Minimax rules

Inadmissible minimax rule

Counterintuitive minimax rule

Credit: Victor Panaretos

Bayes risk

- The Bayes risk for given decision rule, for prior p_{θ}, is

$$
r\left(p_{\theta}, d\right)=E_{\theta} E_{\mathbf{y} \mid \theta} I(\theta, d(\mathbf{y}))=\int R(\theta, d) p(\theta) d \theta
$$

- Equivalently,

$$
r\left(p_{\theta}, d\right)=E_{\mathbf{y}} E_{\theta \mid \mathbf{y}} /(\theta, d(\mathbf{y}))=\int \rho\left(p_{\theta}, d(\mathbf{y})\right) p(\mathbf{y}) d \mathbf{y}
$$

where $p(\mathbf{y})$ is the marginal distribution of \mathbf{y}.

- Also called "preposterior risk"
- The expected risk before obtaining any data

Risks galore!

- Loss function $I(\theta, d(\mathbf{y}))$
- Function of θ and \mathbf{y}
- Posterior risk $\rho\left(p_{\theta}, d(\mathbf{y})\right)$
- Function of \mathbf{y}, averaged over θ
- Frequentist risk $R(\theta, d)$
- Function of θ, averaged over \mathbf{y}
- Bayes risk $r\left(p_{\theta}, d\right)$
- Averaged over both \mathbf{y} and θ

Bayes decision rules

- A Bayes decision rule minimizes Bayes risk:

$$
\underset{d \in \mathcal{D}}{\operatorname{argmin}} r\left(p_{\theta}, d\right)
$$

- Bayes rules are generally admissable
- If a Bayes rule is unique, it is admissible.

If d is inadmissable,

$$
\begin{aligned}
& \text { F- } \alpha^{\infty} \text { set. } R\left(\theta, d^{\circ}\right) \leq R(\theta, d) \quad \forall \theta \\
& \rightarrow R(\theta, d) P(\theta) \leq R(\theta, d) P(\theta) \\
& \rightarrow \int L d \theta \leq \int \sqrt{d \theta} \\
& \rightarrow r\left(P_{0}, d^{*}\right) \leqslant r\left(P_{a}, d\right), \therefore d \text { not } a \\
& \text { unitive BR }
\end{aligned}
$$

Normal-normal model

- For the normal-normal model with $I(\mu, \hat{\mu})=(\mu-\hat{\mu})^{2}$, we've shown

$$
\underset{d \in \mathcal{D}}{\operatorname{argmin}} \rho\left(p_{\theta}, d(\mathbf{y})\right)
$$

is given by the posterior mean for any \mathbf{y}

- So, it is a Bayes decision rule.
- The Bayes risk is given by

$$
\begin{aligned}
& r\left(p_{\theta}, d\right)=\frac{\sigma^{2} \tau^{2}}{\sigma^{2}+n \tau^{2}} \\
& \int P(p a r, d(y)) P(y) d y \\
& \int \frac{\sigma^{2} d \gamma^{2}}{\sigma^{2}+n r^{2}} P(y) d y=
\end{aligned}
$$

Example: Coke bottles (cont.)

- For the Coke bottling example,

$$
r\left(p_{\theta}, d\right)=0.005
$$

- This is expected loss before checking any bottles.
- Recall expected risk after collecting bottles (posterior risk) was also 0.005
- Equivalent in this case, because posterior risk does not depend on \mathbf{y}.
- Bayes risk of $d(\mathbf{y})=\bar{y}$ is 0.01 - twice as large.

$$
\int R(\mu, j) P(\mu)=\frac{\sigma^{2}}{n} \frac{\operatorname{Sp(n)} \Delta \mu}{1}=001
$$

