Estimation, and Decision Theory

PUBH 8442: Bayes Decision Theory and Data Analysis

Eric F. Lock UMN Division of Biostatistics, SPH elock@umn.edu

02/01/2021

PUBH 8442: Bayes Decision Theory and Data Analysis Estimation, and Decision Theory

Point estimation

Full posterior distribution $p(\theta | \mathbf{y})$ is nice...

But often wish to simplify inference and conclusions

▶ Possible *point estimates* for θ :

Posterior mode:

$$\hat{\theta} = \operatorname{argmax}_{\theta} p(\theta \mid \mathbf{y})$$

Posterior expectation:

$$\hat{ heta} = E_{ heta \mid \mathbf{y}} heta = \int heta p(heta \mid \mathbf{y}) \, d heta$$

Posterior median:

$$\mathsf{P}(heta \leq \hat{ heta} \mid \mathbf{y}) = \int_{-\infty}^{\hat{ heta}} \mathsf{p}(heta \mid \mathbf{y}) \, d heta = rac{1}{2}$$

Posterior mode

Easy to compute because only need to work with numerator

 $p(\theta \mid \mathbf{y}) \propto p(\theta) p(\mathbf{y} \mid \theta)$

Sometimes called generalized maximum likelihood estimation

Posterior expectation uses full posterior

- Posterior median is more robust to outliers in y & posterior tails
- How to choose which estimate is optimal for a given application?

Loss function

- A loss function l(truth, a) gives the loss incurred for an action a given the (usually unknown) truth.
 - Here "loss" is abstract could be loss to society, loss in terms of model accuracy, etc.
 - want to minimize loss

▶ If the truth is given by parameter θ , the *posterior risk* is

$$\mathcal{P}(\mathbf{f}_{\mathbf{o}_{j}}) = \int I(\theta \mid \mathbf{a}) = \int I(\theta \mid \mathbf{a}) p(\theta \mid \mathbf{y}) \, d\theta$$

 \blacktriangleright Averaging the loss over the posterior for θ

For point estimation, our action a is given by an estimate θ:
 l(θ, θ̂)

Point estimate loss

• Squared error loss is commonly used

$$I(heta, \hat{ heta}) = (heta - \hat{ heta})^2$$

 Posterior risk for squared error loss is minimized by posterior expectation:

$$\mathcal{D}(\mathcal{P}_{\mathfrak{d}}, \mathfrak{d}) \qquad E_{\theta \mid \mathbf{y}} \theta = \operatorname{argmin}_{\theta} E_{\theta \mid \mathbf{y}} (\theta - \hat{\theta})^{2}$$

$$= \overline{E(\theta - \hat{\theta})^{2}} = \overline{E(\theta - E\theta)^{2}} + \overline{E(\theta - E\theta)^{2}} + 2(\theta - E\theta)(E\theta - \hat{\theta}) + (E\theta - \hat{\theta})^{2}}$$

$$= \overline{E(\theta - E\theta)^{2}} + 0 + (\overline{E\theta} - \hat{\theta})^{2} \ge \overline{E(\theta - E\theta)^{2}} = \rho(\mathcal{P}_{\theta}, E\theta)$$

- Posterior risk for absolute loss $I(\theta, \hat{\theta}) = |\theta \hat{\theta}|$ is minimized by the posterior median
 - Homework

- ▶ Denote the space of allowable actions \mathcal{A} ($a \in \mathcal{A}$)
- ▶ Denote sample space (possible data observations) \mathcal{Y} ($\mathbf{y} \in \mathcal{Y}$)
- A decision rule d ∈ D : Y → A is a rule for determining an action based on data.
- ► Formal decision-theoretic framework:
 - ▶ prior distribution: $p(\theta), \theta \in \Theta$
 - **•** sampling distribution: $p(\mathbf{y} \mid \theta)$
 - ▶ allowable actions: $a \in A$
 - decision rules: $d \in \mathcal{D}$: $\mathcal{Y} \to \mathcal{A}$
 - loss function: $I(\theta, a)$

Normal-normal point estimate

• Recall for y_1, \ldots, y_n iid Normal (μ, σ^2) and $p(\mu) = \text{Normal}(\mu_0, \tau^2)$:

$$p(\mu \mid \mathbf{y}) = \text{Normal}\left(\frac{\sigma^2 \mu_0 + n\tau^2 \bar{y}}{\sigma^2 + n\tau^2}, \frac{\sigma^2 \tau^2}{\sigma^2 + n\tau^2}\right)$$

Consider decision for point estimate of µ:

- ▶ prior distribution: $p(\mu) = Normal(\mu_0, \tau^2), \mu \in \mathbb{R}$
- ▶ sampling distribution: y_1, \ldots, y_n iid Normal (μ, σ^2) , $\mathbf{y} \in \mathbb{R}^n$
- ▶ allowable actions: $a \in A = \mathbb{R}$
- decision rule: $d(\mathbf{y}) = \frac{\sigma^2 \mu_0 + n\tau^2 \bar{\mathbf{y}}}{\sigma^2 + n\tau^2}$
- ▶ loss function: $l(\mu, a) = (\mu a)^2$ (or $l(\mu, a) = |\mu a|$)

- Recall:
 - Coke bottles are filled with calibration Normal(12,0.01)
 - Given machine with calibration μ , bottles filled with Normal(μ , 0.05)
 - For n=5 and $ar{y}=11.88$ oz, $p(\mu \mid \mathbf{y})=\mathsf{Normal}(11.94,0.005)$
- Action is to estimate $\hat{\mu} = 11.94$

• Posterior risk under squared error loss is the posterior variance, 0.005 $E_{M,j} \lfloor (M, M) \rfloor$ = $\int (M-M)^2 P(M|y) M$ = $V_{M,M}(M)$

Frequentist risk

▶ The *frequentist risk* of a decision rule *d* is

$$egin{aligned} & R(heta, d) = E_{\mathbf{y} \mid heta} l(heta, d(\mathbf{y})) \ & = \int l(heta, d(\mathbf{y})) p(\mathbf{y} \mid heta) \, d\mathbf{y} \end{aligned}$$

• Loss averaged over \mathbf{y} , given θ .

• Note: does not depend on prior $p(\theta)$

▶ A rule *d* is *inadmissible* if $\exists d^*$ with

 ${\it R}(heta,d^*) \leq {\it R}(heta,d) \; orall heta \in \Theta$

and < for some $\theta \in \Theta$

- Implies another rule is universally "better"
- A rule that is not inadmissible is admissible
- Admissible rules are not necessarily good

Example: Coke bottles (cont.)

► The (poor) rule $d(\mathbf{y}) = 5$ is admissible because it is unbeatable when $\mu = 5!$ $\mathcal{K}(\mathcal{M},\mathcal{S}) = (\mathcal{M},\mathcal{S})^2$

• The rule $d(\mathbf{y}) = \bar{\mathbf{y}}$ has frequentist risk

$$R(\mu, \bar{y}) = \operatorname{Var}_{\mathbf{y} \mid \mu} \bar{y}$$
$$= \int_{\mathcal{Y} \mid \Lambda \setminus} \left(\mathcal{Y} - \overline{\mathcal{Y}} \right)^{2} = \frac{\sigma^{2}}{n}$$
$$= 0.05/5 = 0.01$$

• Does not depend on μ

Example: Coke bottles (cont.)

• Note: posterior mean has form $B\mu_0 + (1-B)\bar{y}$, where

$$B=\frac{\sigma^2}{\sigma^2+n\tau^2}.$$

• For coke example with n = 5, B = 0.5

• The posterior mean rule $d(\mathbf{y}) = E_{\mu \mid \mathbf{y}} \mu$ has frequentist risk

$$R(\mu, E_{\mu|y}\mu) = B^{2}(\mu - \mu_{0})^{2} + (1 - B)^{2} \operatorname{Var}_{y|\mu} \bar{y}$$

$$= 0.25(\mu - 12)^{2} + 0.0025 \leq E_{y|\mathcal{M}} \left(\mathcal{M} - \mathcal{B}\mathcal{M}_{o} - (-\mathcal{B})\overline{\mathcal{G}}\right)^{2}$$

$$= E \left(\mathcal{B}(\mathcal{M} - \mathcal{M}_{o}) + (1 - \mathcal{B})(\mathcal{M} - \overline{\mathcal{G}})\right)^{2}$$

$$= B^{2} \left(\mathcal{M} - \mathcal{M}_{o}\right)^{2} + (1 - \mathcal{B})^{2} E \left(\mathcal{M} - \overline{\mathcal{G}}\right)^{2}$$

$$+ O$$

► A *minimax rule d* satisfies

$$\sup_{\theta\in\Theta} R(\theta,d) \leq \sup_{\theta\in\Theta} R(\theta,d^*), \ \forall d^*\in\mathcal{D}.$$

Chose d to minimize maximum risk.

Prepare for "the worst case scenario"

Counterintuitive minimax rule

Credit: Victor Panaretos

PUBH 8442: Bayes Decision Theory and Data Analysis Estimation, and Decision Theory

Bayes risk

▶ The *Bayes risk* for given decision rule, for prior p_{θ} , is

$$r(p_{\theta}, d) = E_{\theta} E_{\mathbf{y} \mid \theta} I(\theta, d(\mathbf{y})) = \int R(\theta, d) p(\theta) d\theta$$

$$r(p_{\theta}, d) = E_{\mathbf{y}} E_{\theta \mid \mathbf{y}} l(\theta, d(\mathbf{y})) = \int \rho(p_{\theta}, d(\mathbf{y})) p(\mathbf{y}) d\mathbf{y}$$

where $p(\mathbf{y})$ is the marginal distribution of \mathbf{y} .

Also called "preposterior risk"

The expected risk before obtaining any data

- Loss function $I(\theta, d(\mathbf{y}))$
 - Function of θ and **y**
- Posterior risk $\rho(p_{\theta}, d(\mathbf{y}))$
 - Function of **y**, averaged over θ
- Frequentist risk $R(\theta, d)$
 - Function of θ , averaged over **y**
- ▶ Bayes risk $r(p_{\theta}, d)$
 - \blacktriangleright Averaged over both ${\bf y}$ and θ

• A Bayes decision rule minimizes Bayes risk:

 $\underset{d\in\mathcal{D}}{\operatorname{argmin}} r(p_{\theta}, d)$

• Bayes rules are generally admissable
• If a Bayes rule is unique, it is admissible.

$$I + \lambda i_J in \lambda m (SSALLE)$$

 $\rightarrow J^{(*)} S.t. R(0, E) \leq R(0, A) + O$
 $\neg R(0, E) P(0) \leq R(0, A) P(0)$
 $-7 \leq L = \leq L = d$
 $\rightarrow \Gamma(B, E) \leq \Gamma(B, A), i, A not a$
 $\cup \Gamma(B, E) \leq \Gamma(B, A), i, A not a$
 $\cup \Gamma(B, E) \leq \Gamma(B, A), i, A not a$

Normal-normal model

For the normal-normal model with $I(\mu, \hat{\mu}) = (\mu - \hat{\mu})^2$, we've shown

 $\underset{d \in \mathcal{D}}{\operatorname{argmin}} \rho(p_{\theta}, d(\mathbf{y}))$

is given by the posterior mean for any ${\boldsymbol{y}}$

So, it is a Bayes decision rule.

The Bayes risk is given by

For the Coke bottling example,

$$r(p_{\theta}, d) = 0.005$$

- ▶ This is expected loss before checking any bottles.
- Recall expected risk after collecting bottles (posterior risk) was also 0.005
 - Equivalent in this case, because posterior risk does not depend on y.

► Bayes risk of
$$d(\mathbf{y}) = \bar{\mathbf{y}}$$
 is 0.01 - twice as large.

$$SR(\mathcal{M}, \mathcal{A}) P(\mathcal{M}) = \int_{\mathcal{A}} \int_{\mathcal{A}} P(\mathcal{M}) d\mathcal{M} = 0.01$$