Gibbs Sampling

PUBH 8442: Bayes Decision Theory and Data Analysis

Eric F. Lock
UMN Division of Biostatistics, SPH
elock@umn.edu

04/14/2021

Overview of posterior simulation methods

- Direct sampling
- Non-iterative indirect sampling:
- Importance sampling
- Rejection sampling
- Markov chain Monte Carlo sampling:
- Metropolis-Hastings algorithm
- Gibbs sampling
- And many more!
- Let $\theta=\left(\theta_{1}, \ldots, \theta_{k}\right)$, with density p.
- Recall: Draw direct samples $\theta^{(t)}$ from $p\left(\theta_{1}, \ldots, \theta_{k}\right)$ as follows:
- Draw $\theta_{1}^{(t)}$ from $p\left(\theta_{1}\right)$,
- Draw $\theta_{2}^{(t)}$ from $p\left(\theta_{2} \mid \theta_{1}^{(t)}\right)$,
$-\ldots$, draw $\theta_{k}^{(t)}$ from $p\left(\theta_{k} \mid \theta_{k-1}^{(t)}, \ldots, \theta_{1}^{(t)}\right)$.
- Marginalizing over other parameters, as for $p\left(\theta_{1}\right)$, can be difficult $P\left(\theta_{1}\right)=\int P\left(\theta_{1}, \ldots, \theta_{K}\right) d \theta_{2}-d \theta_{K}$
- Sampling from full conditionals, such as $p\left(\theta_{k} \mid \theta_{k-1}^{(t)}, \ldots, \theta_{1}^{(t)}\right)$, is easier $P\left(\theta_{k} \mid \theta_{1}, \ldots, \theta_{k-1}\right) \alpha P\left(\theta_{1}, \ldots, \theta_{k}\right)$
- This motivates Gibbs sampling!

$$
=\frac{P\left(\theta_{1}, \ldots, \theta_{k}\right)}{S P\left(\theta_{1},-, \theta_{k}\right) d \theta_{k}}
$$

Gibbs sampling

- Wish to draw $\theta^{(1)}, \theta^{(2)}, \ldots$ from distribution p

$$
\theta^{(t)}=\left(\theta_{1}^{(t)}, \ldots, \theta_{k}^{(t)}\right)
$$

- Specify initial vector $\theta^{(0)}$
- For $t=1, \ldots, T$:
- Draw $\theta_{1}^{(t)}$ from $p\left(\theta_{1} \mid \theta_{2}^{(t-1)}, \ldots, \theta_{k}^{(t-1)}\right)$
- Draw $\theta_{2}^{(t)}$ from $p\left(\theta_{2} \mid \theta_{1}^{(t)}, \theta_{3}^{(t-1)}, \ldots, \theta_{k}^{(t-1)}\right)$
- Draw $\theta_{k}^{(t)}$ from $p\left(\theta_{k} \mid \theta_{1}^{(t)}, \theta_{2}^{(t)}, \ldots, \theta_{k-1}^{(t)}\right)$
- Each draw from a full conditional using previous iteration

Gibbs sampling

- $\theta^{(t)}$ converges in distribution to a draw from p as $t \rightarrow \infty$
- In practice, p is a multivariate posterior density
- Gibbs sampling is a special case of Metropolis-Hastings
- Proposal distributions are full conditionals, giving acceptance probability 1

$$
\begin{aligned}
& \text { In MH, } r=\frac{h\left(\theta^{*}\right) \theta\left(\theta^{(t-1)} \mid \theta^{*}\right)}{h\left(\theta^{(t-1)}\right) \theta\left(\theta^{*} \mid \theta^{(t-1)}\right)} \\
& \text { For Gib6s, } h(\vec{\theta}) \propto P\left(\theta_{1}, \ldots, \theta_{k}\right) \text {, } \\
& \theta^{*}=\left(\theta_{1}^{*}, \theta_{2}^{(t-1)}, \ldots, \theta_{k}^{(t-1)}\right) \text { where } \theta_{\sim}^{*} \sim P\left(\theta_{1}, \theta_{2}^{(t-1)}, \ldots, \theta_{k}\right.
\end{aligned}
$$

$$
\begin{aligned}
& =1
\end{aligned}
$$

Comments

- Gibbs sampling is the standard tool for estimating large multivariate posteriors
- As in MH sampling, convergence is quicker if initialization is in area of high posterior concentration
- As in MH sampling, need to consider burn-in and auto-correlation
- But no rejecting of proposals
- With low autocorrelation, we say the parameters "mix well"
- Gibbs sampling assumes we can obtain direct samples from full conditionals
- Also "hybrid" versions, in which another method (such as MH) is used to sample from intractable full conditionals.

Example: IQ (cont.)

- Human IQs have variance 225 and are to be centered at 100
- Infer the "calibration" μ and variance σ^{2} of a certain IQ test
- Sample of 20 individuals, each takes the test n_{i} times.
- $n=\sum_{i=1}^{m} n_{i}$
- Model:
- $y_{i j} \sim \operatorname{Normal}\left(\theta_{i}, \sigma^{2}\right)$ for $i=1, \ldots, m, j=1, \ldots, n_{i}$
- $\theta_{i} \sim \operatorname{Normal}(\mu, 225)$ for $i=1, \ldots, m$
- Use independent Jeffries priors for μ, σ^{2}
- $p\left(\mu, \sigma^{2}\right)=\frac{1}{\sigma^{2}}$

Example: IQ (cont.)

- The full joint density $p\left(\mathbf{y}, \theta, \sigma^{2}, \mu\right)$ is

- $p\left(\theta_{i} \mid \mathbf{y}, \sigma^{2}, \mu\right)=\operatorname{Normal}\left(\frac{\sigma^{2} \mu+n_{i} \tau^{2} \overline{\bar{y}}}{n_{i} \tau^{2}+\sigma^{2}}, \frac{\sigma^{2} \tau^{2}}{n_{i} \tau^{2}+\sigma^{2}}\right)$ for $i=1, \ldots 20$
- $p\left(\sigma^{2} \mid \mathbf{y}, \theta, \mu\right)=I G\left(n / 2, \sum_{i, j}\left(y_{i j}-\theta_{i}\right)^{2} / 2\right)$
- $p\left(\mu \mid \mathbf{y}, \theta, \sigma^{2}\right)=\operatorname{Normal}(\bar{\theta}, 225 / m)$

$$
\begin{aligned}
& P\left(\theta_{i} \mid \mu, \sigma^{2}, \vec{y}\right) \alpha N\left(\theta_{i}|\mu,|\left(\overline{r^{2}}\right) \prod_{j=1}^{n_{i}} N\left(y_{i}| | \theta_{i}, \delta^{2}\right)\right. \\
& P\left(\sigma^{2} \mid \vec{y}, \theta, \mu\right) \propto \frac{1}{\sigma^{2}} \prod_{i=1}^{m} \prod_{j=1}^{n_{i}} N\left(\dot{\varphi}_{i j} \mid \theta_{i j} \sigma^{2}\right) \\
& =\frac{1}{\delta^{2}}\left(\frac{1}{\sqrt{2 \pi \sigma^{2}}}\right)^{n} e^{-\frac{1}{\sigma^{2}} \frac{1}{2} \sum_{i, j}\left(y_{i j} \cdot \theta_{i}\right)^{2}} \\
& \alpha \pm G\left(\frac{n}{2}, \frac{1}{2} \sum_{i, j}\left(y_{i j}-\theta_{i}\right)\right)
\end{aligned}
$$

Example: IQ (cont.)

- Use Gibbs to draw samples $\left(\theta^{(t)}, \sigma^{2(t)}, \mu^{(t)}\right)$ from

$$
p\left(\theta, \sigma^{2}, \mu \mid \mathbf{y}\right)
$$

- Initial values: $\sigma^{2}=64, \mu=100$
- Begin sampling with θ
- Each iteration draws from $p\left(\theta \mid \mathbf{y}, \sigma^{2}, \mu\right), p\left(\sigma^{2} \mid \mathbf{y}, \theta, \mu\right)$ and $p\left(\mu \mid \mathbf{y}, \theta, \sigma^{2}\right)$
- Run 10000 iterations, using the first 2000 as burn-in
http://www.ericfrazerlock.com/Gibbs_Sampling_Rcode1.r

Example: IQ (cont.)

- Gibbs draws $\mu^{(1)}, \mu^{(2)}, \ldots$:

- Autocorrelation of draws $r=0.058$

Example: IQ (cont.)

- Estimated marginal posterior density for μ :

Histogram of posterior draws, mu

Example: IQ (cont.)

- Gibbs draws $\sigma^{2(1)}, \sigma^{2(2)}, \ldots$:

- Autocorrelation of draws $r=0.348$

Example: IQ (cont.)

- Estimated marginal posterior density for σ^{2} :

Histogram of posterior draws, sigma^2

Example: IQ (cont.)

- Gibbs draws $\theta_{i}^{(1)}, \theta_{i}^{(2)}, \ldots$ for three individuals i :

Example: IQ (cont.)

- IQs should be centered at 100
- Check if the test is calibrated too high

$$
P(\mu>100 \mid \mathbf{y}) \approx \frac{\sum_{i=1}^{N} \mathbb{1}_{\mu^{(i)}>100}}{N}=0.996
$$

- Can use draws to construct 95% credible interval for IQ of each individual
- Use the empirical 2.5% and 97.5% quantiles of simulated draws
http://www.ericfrazerlock.com/Gibbs_Sampling_Rcode1.r

Example: IQ (cont.)

- Mean and $95 \% \mathrm{Cl}$ for each individual:

