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Importance Sampling

◮ Recall: Direct sampling can be used to estimate

󰁝
c(θ)p(θ) dθ

by simulating draws from p(θ)

◮ What if normalizing constant for p(θ) is unknown?

◮ Several “indirect” simulation methods, including importance
sampling

◮ Basic idea of importance sampling:

◮ Simulate θ from some other distribution g , but weigh each
simulation by its relative likelihood under p.
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Importance Sampling

◮ Consider the posterior p(θ | y) ∝ p(y | θ)p(θ)

◮ For a given function c ,

E (c(θ) | y) =
󰁕
c(θ)p(y | θ)p(θ) dθ󰁕
p(y | θ)p(θ) dθ

◮ Simulate θ1, . . . , θN iid from density g(θ)

◮ Define the weights w(θ) = p(y | θ)p(θ)/g(θ):

E (c(θ) | y) =
󰁕
c(θ)w(θ)g(θ) dθ󰁕
w(θ)g(θ) dθ

≈
1
N

󰁓N
j=1 c(θj)w(θj)

1
N

󰁓N
j=1 w(θj)
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Comments

◮ g(θ) is called the importance function

◮ w(θ) weighs values according to there (relative) posterior
probability, and probability of being simulated from g

◮ Higher posterior probability → higher weight

◮ Higher probability of being simulated from g → lower weight

◮ Ideally, g closely resembles p(θ | y)

◮ g = p(θ | y) minimizes simulation variability (equal weights)

◮ If g(θ) and p(θ | y) are very different, many weights will be
close to 0 so need large N for good approximations

◮ g and p(θ | y) should (at least) have common support.
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Density approximation

◮ Plugging in c(θ) = θ∈(a,b) gives

P(θ ∈ (a, b)) ≈
󰁓

θj∈(a,b) w(θj)
󰁓N

j=1 w(θj)

◮ Can use this to approximate the posterior density with
weighted histograms.
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Simulation precision

◮ Define

󰁧c(θ) =
1
N

󰁓N
j=1 c(θj)w(θj)

1
N

󰁓N
j=1 w(θj)

◮ Define xj = c(θj)w(θj) and yj = w(θj)

◮ We can compute the (simulation) variability in 󰁧c(θ) as

Var

󰀕
x̄

ȳ

󰀖
≈ 1

N

󰀣
σ̂2
X

ȳ2
+

x̄2σ̂2
y

ȳ4
− 2x̄ σ̂xy

ȳ3

󰀤

where σ̂2
x = 1

N−1

󰁓
(xj − x̄)2, σ̂2

y = 1
N−1

󰁓
(yj − ȳ)2, and

σ̂xy =
1

N − 1

󰁛
(xj − x̄)(yj − ȳ)

◮ *The expression in Carlin&Louis p.116 is incorrect*
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Example: Normal-Gamma model

◮ Suppose y = y1, . . . , yn
iid∼ Normal(0, θ)

◮ Prior θ ∼ Gamma(3, 0.5)1

◮ The posterior is

p(θ | y) ∝ θ(4−n)/2exp

󰀫
− 1

2θ

󰀣
θ2 +

n󰁛

i=1

y2i

󰀤󰀬

◮ Not a well-known or easily integrable pdf (unlike IG prior)

1Example credit – D. Bandyopadhyay
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Example: Normal-Gamma model

◮ Importance sample with g = Gamma(α = cs2,β = c)

◮ s2 is the sample variance of y

◮ Expected value under g is s2

◮ Higher c → less variance

◮ Importance weight function is

w(θ) = θ
4−n
2

−cs2+1exp

󰀫
− 1

2θ

󰀣
θ2 +

n󰁛

i=1

y2i

󰀤
+ cθ

󰀬

◮ Consider posterior simulation precision for different c .
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Example: Normal-Gamma model

◮ For different values of c :

◮ Simulate N = 100000 draws from g(θ)

◮ Compute w(θ) from each draw

◮ For the estimated expected value

θ̂ =
1
N

󰁓N
j=1 θjw(θj)

1
N

󰁓N
j=1 w(θj)

compute the simulation uncertainty Var(θ̂) using formula.
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Example: Normal-Gamma model

Simulation variance of θ̂ for c for given data y1, . . . , y20
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http://www.ericfrazerlock.com/Importance_Sampling_Rcode1.r

Minimized at c = 0.92
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Example: Normal-Gamma model

◮ Using draws under c = 0.92,

θ̂ = 4.890

◮ We can also compute posterior probabilities, e.g.,

P(θ > 5 | y) =
󰁓

θj>5 w(θj)
󰁓N

j=1 w(θj)
= 0.410
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Example: Normal-Gamma model

Weighted histogram approximating posterior p(θ | y), for
c = 0.92. g(θ) is shown in red
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Example: Normal-Gamma model

Weighted histogram approximating posterior p(θ | y), for
c = 0.10. g(θ) is shown in red
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Example: Normal-Gamma model

Weighted histogram approximating posterior p(θ | y), for
c = 4. g(θ) is shown in red
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