Importance Sampling

PUBH 8442: Bayes Decision Theory and Data Analysis

Eric F. Lock
UMN Division of Biostatistics, SPH
elock@umn.edu

03/25/2024

Importance Sampling

Recall: Direct sampling can be used to estimate

$$\int c(\theta)p(\theta)\,d\theta$$

by simulating draws from $p(\theta)$

- ▶ What if normalizing constant for $p(\theta)$ is unknown?
- Several "indirect" simulation methods, including importance sampling
- Basic idea of importance sampling:
 - Simulate θ from some other distribution g, but weigh each simulation by its relative likelihood under p.

Importance Sampling

- ► Consider the posterior $p(\theta \mid \mathbf{y}) \propto p(\mathbf{y} \mid \theta)p(\theta)$
- ► For a given function c,

$$E(c(\theta) \mid \mathbf{y}) = \frac{\int c(\theta) p(\mathbf{y} \mid \theta) p(\theta) d\theta}{\int p(\mathbf{y} \mid \theta) p(\theta) d\theta}$$

- ▶ Simulate $\theta_1, \ldots, \theta_N$ iid from density $g(\theta)$
- ▶ Define the weights $w(\theta) = p(\mathbf{y} \mid \theta)p(\theta)/g(\theta)$:

$$E(c(\theta) | \mathbf{y}) = \frac{\int c(\theta) w(\theta) g(\theta) d\theta}{\int w(\theta) g(\theta) d\theta}$$
$$\approx \frac{\frac{1}{N} \sum_{j=1}^{N} c(\theta_j) w(\theta_j)}{\frac{1}{N} \sum_{j=1}^{N} w(\theta_j)}$$

Comments

- $ightharpoonup g(\theta)$ is called the *importance function*
- $w(\theta)$ weighs values according to there (relative) posterior probability, and probability of being simulated from g
 - lacktriangle Higher posterior probability o higher weight
 - lackbox Higher probability of being simulated from g o lower weight
- ▶ Ideally, g closely resembles $p(\theta \mid \mathbf{y})$
 - $ightharpoonup g = p(\theta \mid \mathbf{y})$ minimizes simulation variability (equal weights)
 - ▶ If $g(\theta)$ and $p(\theta \mid y)$ are very different, many weights will be close to 0 so need large N for good approximations
 - ▶ g and $p(\theta \mid \mathbf{y})$ should (at least) have common support.

Density approximation

▶ Plugging in $c(\theta) = \mathbb{1}_{\theta \in (a,b)}$ gives

$$P(\theta \in (a,b)) \approx \frac{\sum_{\theta_j \in (a,b)} w(\theta_j)}{\sum_{j=1}^N w(\theta_j)}$$

► Can use this to approximate the posterior density with weighted histograms.

Simulation precision

Define

$$\widehat{c(\theta)} = \frac{\frac{1}{N} \sum_{j=1}^{N} c(\theta_j) w(\theta_j)}{\frac{1}{N} \sum_{j=1}^{N} w(\theta_j)}$$

- ▶ Define $x_i = c(\theta_i)w(\theta_i)$ and $y_i = w(\theta_i)$
- We can compute the (simulation) variability in $c(\theta)$ as

$$\mathsf{Var}\left(\frac{\bar{x}}{\bar{y}}\right) \approx \frac{1}{\mathsf{N}}\left(\frac{\hat{\sigma}_X^2}{\bar{y}^2} + \frac{\bar{x}^2\hat{\sigma}_y^2}{\bar{y}^4} - \frac{2\bar{x}\hat{\sigma}_{xy}}{\bar{y}^3}\right)$$

where $\hat{\sigma}_{x}^{2} = \frac{1}{N-1} \sum_{i} (x_{i} - \bar{x})^{2}$, $\hat{\sigma}_{y}^{2} = \frac{1}{N-1} \sum_{i} (y_{i} - \bar{y})^{2}$, and

$$\hat{\sigma}_{xy} = \frac{1}{N-1} \sum (x_j - \bar{x})(y_j - \bar{y})$$

The expression in Carlin&Louis p.116 is incorrect

- ▶ Suppose $\mathbf{y} = y_1, \dots, y_n \stackrel{iid}{\sim} \text{Normal}(0, \theta)$
- ▶ Prior $\theta \sim \text{Gamma}(3, 0.5)^1$
- ▶ The posterior is

$$p(\theta \mid \mathbf{y}) \propto \theta^{(4-n)/2} \exp \left\{ -\frac{1}{2\theta} \left(\theta^2 + \sum_{i=1}^n y_i^2 \right) \right\}$$

▶ Not a well-known or easily integrable pdf (unlike IG prior)

¹Example credit – D. Bandyopadhyay

- ▶ Importance sample with $g = Gamma(\alpha = cs^2, \beta = c)$
 - $ightharpoonup s^2$ is the sample variance of $ightharpoonup s^2$
 - ightharpoonup Expected value under g is s^2
 - ▶ Higher $c \rightarrow$ less variance
- ▶ Importance weight function is

$$w(\theta) = \theta^{\frac{4-n}{2} - cs^2 + 1} \exp\left\{ -\frac{1}{2\theta} \left(\theta^2 + \sum_{i=1}^n y_i^2 \right) + c\theta \right\}$$

► Consider posterior simulation precision for different *c*.

- For different values of c:
- ▶ Simulate N = 100000 draws from $g(\theta)$
- ightharpoonup Compute $w(\theta)$ from each draw
- ▶ For the estimated expected value

$$\hat{\theta} = \frac{\frac{1}{N} \sum_{j=1}^{N} \theta_j w(\theta_j)}{\frac{1}{N} \sum_{j=1}^{N} w(\theta_j)}$$

compute the simulation uncertainty $Var(\hat{\theta})$ using formula.

• Simulation variance of $\hat{\theta}$ for c for given data y_1, \ldots, y_{20}

http://www.ericfrazerlock.com/Importance_Sampling_Rcode1.r

• Minimized at c = 0.92

▶ Using draws under c = 0.92,

$$\hat{\theta} = 4.890$$

▶ We can also compute posterior probabilities, e.g.,

$$P(\theta > 5 \mid \mathbf{y}) = \frac{\sum_{\theta_j > 5} w(\theta_j)}{\sum_{j=1}^{N} w(\theta_j)} = 0.410$$

• Weighted histogram approximating posterior $p(\theta \mid \mathbf{y})$, for c = 0.92. $g(\theta)$ is shown in red

http://www.ericfrazerlock.com/Importance_Sampling_Rcode1.r

• Weighted histogram approximating posterior $p(\theta \mid \mathbf{y})$, for c = 0.10. $g(\theta)$ is shown in red

http://www.ericfrazerlock.com/Importance_Sampling_Rcode1.r

• Weighted histogram approximating posterior $p(\theta \mid \mathbf{y})$, for c = 4. $g(\theta)$ is shown in red

http://www.ericfrazerlock.com/Importance_Sampling_Rcode1.r