Metropolis-Hastings Sampling

PUBH 8442: Bayes Decision Theory and Data Analysis

Eric F. Lock
UMN Division of Biostatistics, SPH
elock@umn.edu

03/31/2021

Overview of posterior simulation methods

- Direct sampling
- Non-iterative indirect sampling:
 - Importance sampling
 - Rejection sampling
- Markov chain Monte Carlo sampling:
 - Metropolis-Hastings algorithm
 - Gibbs sampling
- ► And many more!

Markov Chain Monte Carlo (MCMC)

- "Monte Carlo" refers to any method that uses random sampling to obtain results
- ▶ A *Markov chain* is a sequence of random variables $\theta^{(1)}, \theta^{(2)}, \ldots$, satisfying the *Markov property*:

$$P(\theta^{(t+1)} | \theta^{(1)}, \dots, \theta^{(t)}) = P(\theta^{(t+1)} | \theta^{(t)}).$$

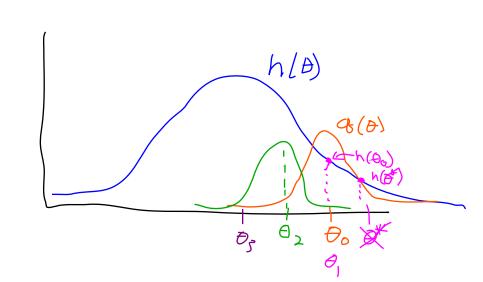
- ightharpoonup Current state t+1 can depend only on previous state t
- ▶ MCMC methods "adaptively" simulate from posterior $p(\theta \mid \mathbf{y})$
 - Current draw depends on previous draw
 - ▶ Draws converge to approximate dependent samples from $p(\theta \mid \mathbf{y})$

Metropolis-Hastings sampling

- Wish to draw $\theta^{(1)}, \theta^{(2)}, \dots$ from (potentially unnormalized) distribution h
 - ▶ e.g. $h(\theta) = p(\mathbf{y} \mid \theta)p(\theta)$
- ▶ Define a *proposal* density that depends on previous draw $\theta^{(t-1)}$: $q(\cdot \mid \theta^{(t-1)})$
- New draw is taken from $q(\cdot | \theta^{(t-1)})$, with a rejection step to encourage new draw has high density under h
- ▶ The *Metropolis* algorithm applies to symmetric *q*:

$$q(\theta^* \mid \theta^{(t-1)}) = q(\theta^{(t-1)} \mid \theta^*)$$

▶ *Metropolis-Hastings* algorithm extends to non-symmetric *q*.



The Metropolis Algorithm

- ▶ Specify an initial value $\theta^{(0)}$
- For t = 1, ..., T, repeat:
 - ▶ Draw θ^* from $q(\cdot \mid \theta^{(t-1)})$
 - ► Compute $r = \frac{h(\theta^*)}{h(\theta^{(t-1)})}$
 - $\text{If } r \geq 1 \text{, set } \theta^{(t)} = \theta^*;$ $\text{if } r < 1 \text{, set } \theta^{(t)} = \begin{cases} \theta^* \text{ with probability } r \\ \theta^{(t-1)} \text{ with probability } 1 r \end{cases} .$
- Often work with log-densities for computational reasons:

$$r = \exp\{\log(h(\theta^*)) - \log(h(\theta^{(t-1)}))\}$$

The Metropolis-Hastings Algorithm

- ▶ Specify an initial value $\theta^{(0)}$
- ▶ For t = 1, ..., T, repeat:
 - ▶ Draw θ^* from $q(\cdot \mid \theta^{(t-1)})$
 - $\qquad \text{Compute } r = \frac{h(\theta^*)q(\theta^{(t-1)} \mid \theta^*)}{h(\theta^{(t-1)})q(\theta^* \mid \theta^{(t-1)})}.$

Comments

- Under mild conditions, $\theta^{(t)}$ converges in distribution to a draw from posterior as $t \to \infty$
 - ► See, e.g., http://web1.sph.emory.edu/users/hwu30/teaching/statcomp/papers/chibGreenbergMH.pdf
- ► The Metropolis-Hastings algorithm is identical to the Metropolis if *q* is symmetric
- In practice, a good initial value $\theta^{(0)}$ will have high posterior density
 - **Could initialize by posterior mode, if possible:** $\theta^{(0)} = \hat{\theta}$
 - lacktriangle Alternatively, could make a guess or generate $heta^{(0)}$ from prior

Choice of proposal density

▶ A common choice for q is a normal distribution centered at previous draw:

$$q(\theta^* \mid \theta^{(t-1)}) = \mathsf{Normal}(\theta^{(t-1)}, \sigma^2)$$

If θ is multivariate, replace σ^2 with Σ

- ▶ Higher σ^2 often leads to low acceptance ratio
 - Proposals θ^* may be far away from areas in which p concentrates ("big jumps")
- ightharpoonup Lower σ^2 often leads to high acceptance ratio
 - ▶ Proposals θ^* are close to $\theta^{(t-1)}$. Many iterations needed to cover larger areas of parameter space.
- ▶ Would like to compromise between these two extremes

Choice of proposal density

- As a rule of thumb, accepting about 20% 70% of proposals is reasonable
- ► Can vary q to give the desired rejection rate
- ▶ Some algorithms adjust *q* adaptively during sampling
- ▶ Alternatively, for $q = \text{Normal}(\theta^{(t-1)}, \sigma^2)$, let σ^2 be an approximation to posterior variance.
 - ▶ Recall Bayesian CLT: $Var_{\theta \mid \mathbf{y}} \theta \approx (I_{\theta}^{\mathbf{p}}(\mathbf{y}))^{-1}$

Other Considerations

- Beginning iterations are dependent on initial value
 - ▶ Especially if initial value is far from concentration of posterior.
- ▶ Typical to ignore *M* beginning iterations as *burn in*
 - ▶ Burn in can vary: M = 1,000, M = 5,000 or even M = 100,000 iterations
 - May adjust proposal distribution during burn-in
- Aim for stationarity after burn-in: The probability distribution of θ_t does not depend on t
 - lacktriangle Initial iterations not stationary because of dependence on $heta^{(0)}$
 - Eventually iterations will be approximately stationary.
 - The stationary distribution is the posterior:

$$p(\theta^{(t)}) \approx p(\theta \mid \mathbf{y}) \text{ for } t > M$$

Other Considerations

- lacktriangledown $heta^{(t)}$ for $t \geq M$ are kept as draws from posterior
- ▶ To validate burn-in, can run from different initializations
 - ▶ See if they converge to similar distributions after burn-in
- ▶ In general, want low dependence between MCMC samples
 - ▶ Low autocorrelation: $cor(\theta^{(t)}, \theta^{(t-1)})$.
 - ▶ Leads to better convergence toward stationary posterior
 - ▶ Leads to lower uncertainty in results from posterior draws

- Consider the shooting percentage for a basketball team over n games: $\mathbf{y} = (y_1, \dots, y_n)$
- ▶ Model $y_i \stackrel{iid}{\sim} \text{Beta}(\theta, 2)$ for $\theta > 0$

$$p(y_i \mid \theta) = \theta(1+\theta)y_i^{\theta-1}(1-y_i)$$

- ▶ Use a Gamma(a, b) prior for θ
- ► Then,

$$egin{aligned}
ho(heta \mid \mathbf{y}) &\propto heta^{n+a-1}(heta+1)^n e^{-b heta} \left(\prod_{i=1}^n y_i
ight)^{ heta} \ &:= h(heta) \end{aligned}$$

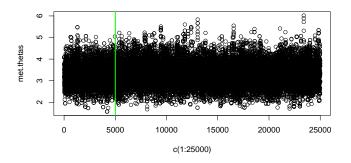
- ▶ Observe n = 20 games with $\sum_{i=1}^{20} \log y_i = -9.89$
- \triangleright Prior a = b = 1
- ▶ Previously approximated posterior using Bayesian CLT:

$$p(\theta \mid \mathbf{y}) \approx \text{Normal}(3.24, 0.33)$$

- Now, use Metropolis sampling to draw from $p(\theta \mid \mathbf{y})$.
 - lackbox Use asymptotic approximation to motivate $heta^{(0)}$ and q

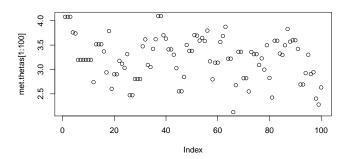
- Apply Metropolis algorithm, with
 - Initial value $\theta^{(0)} = 3.24$
 - ▶ Proposal density $p(\cdot | \theta^{(t-1)}) = \text{Normal}(\theta^{(t-1)}, 0.33)$
 - ▶ Unnormalized posterior $h(\theta)$
- ightharpoonup Run for T=25,000 iterations
- ▶ Treat the first M = 5,000 iterations as burn-in
- ▶ Remaining N = 20,000 as draws from $p(\theta \mid \mathbf{y})$ http://www.ericfrazerlock.com/Metropolis-Hastings_Sampling_Rcode1.r

• Simulated iterations $\theta^{(1)}, \theta^{(2)}, \ldots$

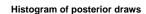


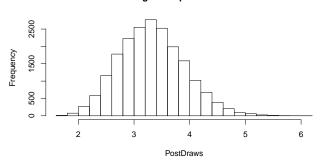
- Proposal acceptance rate = 70%
- Autocorrelation of draws r = 0.778

• First 100 iterations:



• Estimated posterior density:





 Repeat algorithm with different initializations and proposal densities

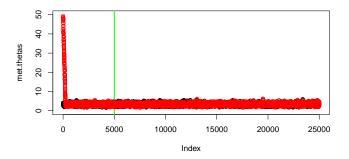
$$\theta^{(0)} = 50$$

$$p(\cdot \mid \theta^{(t-1)}) = Normal(\theta^{(t-1)}, 0.01)$$

$$p(\cdot \mid \theta^{(t-1)}) = Normal(\theta^{(t-1)}, 50)$$

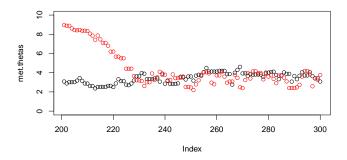
► Explore effect on Markov chain, sensitivity of results http://www.ericfrazerlock.com/Metropolis-Hastings_Sampling_ Rcode1.r

• Simulated iterations with $\theta^{(0)} = 50$ (red)

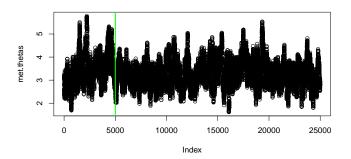


• Draws are indistinguishable after burn-in

• Iterations 200-300:

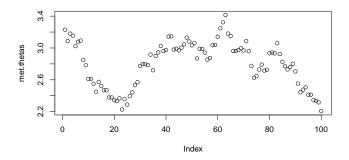


• Simulated iterations with $p(\cdot \mid \theta^{(t-1)}) = \mathsf{Normal}(\theta^{(t-1)}, 0.01)$

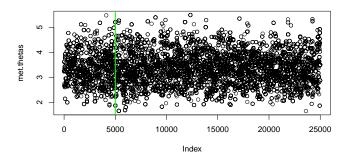


- Proposal acceptance rate = 94%
- Autocorrelation of draws r = 0.987

• First 100 draws:

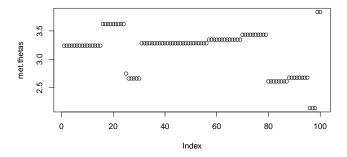


• Simulated iterations with $p(\cdot | \theta^{(t-1)}) = \text{Normal}(\theta^{(t-1)}, 50)$



- Proposal acceptance rate = 10%
- Autocorrelation of draws r = 0.870

First 100 draws:



• Comparison of posterior density estimates:

