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Overview of posterior simulation methods

» Direct sampling
» Non-iterative indirect sampling:

» Importance sampling

» Rejection sampling

» Markov chain Monte Carlo sampling:

» Metropolis-Hastings algorithm

» Gibbs sampling

» And many more!
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Markov Chain Monte Carlo (MCMC)

» “Monte Carlo” refers to any method that uses random
sampling to obtain results

» A Markov chain is a sequence of random variables
() 92 . satisfying the Markov property:

PO o) 90y = p(pt1) | o(0))y,

» Current state t + 1 can depend only on previous state t

» MCMC methods “adaptively” simulate from posterior p(f | y)
» Current draw depends on previous draw

» Draws converge to approximate dependent samples from
p(01y)
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Metropolis-Hastings sampling

» Wish to draw 61, #() .. from (potentially unnormalized)
distribution h

> eg. h(0) = p(y | 6)p(0)

» Define a proposal density that depends on previous draw
p(t—1). q(- | g(t—l))

» New draw is taken from g(-| #(t=1)), with a rejection step to
encourage new draw has high density under h

» The Metropolis algorithm applies to symmetric g:

q(0" [ 91D) = q(6"" P | 07)
» Metropolis-Hastings algorithm extends to non-symmetric q.

PUBH 8442: Bayes Decision Theory and Data Analysis





Eric
Pencil

Eric
Pencil

Eric
Pencil

Eric
Pencil

Eric
Pencil

Eric
Pencil

Eric
Pencil

Eric
Pencil

Eric
Pencil

Eric
Pencil

Eric
Pencil

Eric
Pencil

Eric
Pencil

Eric
Pencil

Eric
Pencil

Eric
Pencil

Eric
Pencil

Eric
Pencil


The Metropolis Algorithm

» Specify an initial value §(9)
» Fort=1,..., T, repeat:

» Draw #* from g(-| #(t=1)

h(6%)

» Compute r = GG

> If r>1, set 6 = ¢*;
ifr<1 set 8 0* with probability r
I 1 =
0(t=1) with probability 1 — r

» Often work with log-densities for computational reasons:

r = exp{log(h(6*)) — log(h(6=1))}
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The Metropolis-Hastings Algorithm

» Specify an initial value 6(9)
» Fort=1,..., T, repeat:

» Draw 6* from g(- | 6(t~1))

h(0")a(0" | 0%)

» Compute r = ROED)g(@" [ D) "

*

> Ifr>1, set 69

fre1 set 0 — 0* with probability r
, ~ 16D with probability 1 — r
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Comments

» Under mild conditions, (1) converges in distribution to a draw
from posterior as t — oo

» See, e.g., http://webl.sph.emory.edu/users/hwu30/
teaching/statcomp/papers/chibGreenbergVMH. pdf

» The Metropolis-Hastings algorithm is identical to the
Metropolis if g is symmetric

» In practice, a good initial value (%) will have high posterior
density

» Could initialize by posterior mode, if possible: §(©) = 0

> Alternatively, could make a guess or generate #(°) from prior
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Choice of proposal density

» A common choice for g is a normal distribution centered at
previous draw:

q(60* | 0¢~Y) = Normal(6(t~1), 5?)
If 6 is multivariate, replace o2 with ¥

» Higher o2 often leads to low acceptance ratio

» Proposals 8* may be far away from areas in which p
concentrates (“big jumps”)

» Lower o2 often leads to high acceptance ratio

» Proposals 6* are close to 6(t=1). Many iterations needed to
cover larger areas of parameter space.

» Would like to compromise between these two extremes
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Choice of proposal density

» As a rule of thumb, accepting about 20% — 70% of proposals
is reasonable

» Can vary g to give the desired rejection rate
» Some algorithms adjust g adaptively during sampling

» Alternatively, for ¢ = Normal(6(t=1) 52), let 02 be an
approximation to posterior variance.

> Recall Bayesian CLT: Vary |6 ~ (17 (y))™*
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Other Considerations

» Beginning iterations are dependent on initial value

» Especially if initial value is far from concentration of posterior.

» Typical to ignore M beginning iterations as burn in

» Burn in can vary: M =1,000, M = 5,000 or even
M = 100, 000 iterations

» May adjust proposal distribution during burn-in

» Aim for stationarity after burn-in:
The probability distribution of #; does not depend on t

> Initial iterations not stationary because of dependence on 6(%)
» Eventually iterations will be approximately stationary.

» The stationary distribution is the posterior:

p(0) =~ p(0 |y) for t > M
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Other Considerations

» 0() for t > M are kept as draws from posterior
» To validate burn-in, can run from different initializations

» See if they converge to similar distributions after burn-in

» In general, want low dependence between MCMC samples

» Low autocorrelation: cor(#(), 4(t—1)).
» Leads to better convergence toward stationary posterior

» Leads to lower uncertainty in results from posterior draws
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Example: Basketball shooting (cont.)

» Consider the shooting percentage for a basketball team over n
games: Y = (y1,...,¥n)

» Model y; i Beta(#,2) for 6 >0

p(yi|6) = 0(1+6)y! (1 - y)

» Use a Gamma(a, b) prior for 6

» Then,

n 0
P(9 | y) x 9n+a—1(9 + 1)ne—b9 <H y:’)

i=1
= h(6)
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Example: Basketball shooting (cont.)

» Observe n = 20 games with 2?21 logy; = —9.89
» Priora=b=1

» Previously approximated posterior using Bayesian CLT:

p(0 | y) ~ Normal(3.24,0.33)

» Now, use Metropolis sampling to draw from p(6 | y).

» Use asymptotic approximation to motivate (9 and ¢
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Example: Basketball shooting (cont.)

» Apply Metropolis algorithm, with

> Initial value (9 = 3.24
» Proposal density p(- | #(t=1)) = Normal(#(t~1),0.33)

» Unnormalized posterior h(6)

» Run for T = 25,000 iterations
» Treat the first M = 5,000 iterations as burn-in

» Remaining N = 20,000 as draws from p(6 | y)
http://www.ericfrazerlock.com/Metropolis-Hastings_Sampling_
Rcodel.r
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Example: Basketball shooting (cont.)

e Simulated iterations 81, 92

met.thetas

T T T T T T
0 5000 10000 15000 20000 25000

¢(1:25000)

@ Proposal acceptance rate = 70%
@ Autocorrelation of draws r = 0.778
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Example: Basketball shooting (cont.)

@ First 100 iterations:
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Example: Basketball shooting (cont.)

o Estimated posterior density:

Histogram of posterior draws
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Example: Basketball shooting (cont.)

» Repeat algorithm with different initializations and proposal
densities

» 00 =50
> p(-|0¢=1) = Normal(#(t—1)0.01)

» p(- | 0(t~) = Normal(6(t—1) 50)

» Explore effect on Markov chain, sensitivity of results
http://www.ericfrazerlock.com/Metropolis-Hastings_Sampling_
Rcodel.r
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Example: Basketball shooting (cont.)

e Simulated iterations with #(°) = 50 (red)
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@ Draws are indistinguishable after burn-in
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Example: Basketball shooting (cont.)

@ lterations 200-300:
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Example: Basketball shooting (cont.)

o Simulated iterations with p(- | #(t=1)) = Normal(9(t=1),0.01)

met.thetas

0 5000 10000 15000 20000 25000

Index

@ Proposal acceptance rate = 94%

@ Autocorrelation of draws r = 0.987
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Example: Basketball shooting (cont.)

@ First 100 draws:
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Example: Basketball shooting (cont.)

e Simulated iterations with p(- | 8(t=1)) = Normal(8(t~1), 50)

met.thetas

0 5000 10000 15000 20000 25000

Index

@ Proposal acceptance rate = 10%

@ Autocorrelation of draws r = 0.870
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Example: Basketball shooting (cont.)

@ First 100 draws:

o 00000000
o 7 000000000
" 0000000000000
<
g 9o |
= o™
@
£ © o0 00000000
o 00000000
9
T T T T T =
0 20 40 60 80 100
Index

PUBH 8442: Bayes Decision Theory and Data Analysis



Example: Basketball shooting (cont.)

@ Comparison of posterior density estimates:

Init = 3.44, Var = 0.33 Init = 50, Var = 0.33
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