Mixture Models

PUBH 8442: Bayes Decision Theory and Data Analysis

Eric F. Lock
UMN Division of Biostatistics, SPH
elock@umn.edu
04/16/2024

- Let f_{1}, \ldots, f_{K} be densities with weights q_{1}, \ldots, q_{k} where

$$
\left.q_{1}+q_{2}+\cdots+q_{k}=1 \text { and } q_{k} \geq 0 \forall k .\right]
$$

- Assume y_{1}, \ldots, y_{n} are iid with density

$$
p\left(y_{i}\right)=\sum_{k=1}^{K} q_{k} f_{k}\left(y_{i}\right)
$$

- Equivalently,

$$
y_{i} \sim\left\{\begin{array}{l}
f_{1} \text { with probability } q_{1} \\
\vdots \\
f_{K} \text { with probability } q_{k}
\end{array}\right.
$$

- Useful for modeling complex distributions.
- Mixture of simpler component distributions f_{k}.

Dirichlet distribution

- In a Bayesian framework, put a prior on $q=\left(q_{1}, \ldots, q_{K}\right)$
- A Dirichlet prior is commonly used for q
- Parameterized by concentration values $\alpha=\left(\alpha_{1}, \ldots, \alpha_{K}\right)$:

$$
\pi(q)=\frac{1}{B(\alpha)} \prod_{k=1}^{K} q_{k}^{\alpha_{k}-1}
$$

for $q_{1}+q_{2}+\cdots+q_{K}=1$ and $q_{k} \geq 0 \forall k$.

- $B(\cdot)$ is the multivariate beta function, defined by the gamma function Γ :

$$
B(\alpha)=\frac{\prod_{k=1}^{K} \Gamma\left(\alpha_{k}\right)}{\Gamma\left(\sum_{k=1}^{K} \alpha_{k}\right)}
$$

- For $K=2$, the $\operatorname{Dirichlet}\left(\alpha_{1}, \alpha_{2}\right)=\operatorname{Beta}\left(\alpha_{1}, \alpha_{2}\right)$

Dirichlet distribution

- The domain of the Dirichlet is the $K-1$ unit simplex

$$
\Delta^{K-1}=\left\{q_{1}, \ldots, q_{K} \in \mathbb{R}^{K}: \sum_{k=1}^{K} q_{k}=1 \text { and } q_{k} \geq 0 \forall k\right\}
$$

- $\alpha_{1}=\ldots=\alpha_{K}=1$ implies a uniform distribution on \triangle^{K-1}
- Dirichlet-multinomial model:
- Let z_{1}, \ldots, z_{n} be iid variables from K categories
- $z_{i} \in\{1, \ldots, K\}$ with $p\left(z_{i}=k\right)=q_{k}$
- Let n_{k} be the number of $z_{i}^{\prime} s$ from category k.

$$
\left(n_{1}, \ldots, n_{k}\right) \sim \operatorname{Multinomial}(n, q)
$$

- The $\operatorname{Dirichlet}(\alpha)$ is conjugate for q :

$$
p(q \mid \mathbf{z})=\operatorname{Dirichlet}\left(\alpha_{1}+n_{1}, \ldots, \alpha_{1}+n_{K}\right)
$$

Bayesian finite mixture model

- We can also put a prior on $\left(f_{1}, \ldots, f_{K}\right)$
- Commonly assume f_{k} 's come from same parametric family:

$$
f_{k}(\cdot)=f\left(\cdot \mid \theta_{k}\right)
$$

and put a prior on $\theta_{1}, \ldots, \theta_{k}$

- For example, $f_{k}=\operatorname{Normal}\left(\mu_{k}, \sigma_{k}^{2}\right)$ with independent priors

$$
\begin{aligned}
& \qquad \begin{aligned}
& \mu_{k} \sim \operatorname{Normal}\left(\mu_{0}, \tau^{2}\right) \\
& \sigma_{k}^{2} \sim \operatorname{IG}(a, b) \\
& \text { on } \theta_{k}=\left(\mu_{k}, \sigma_{k}^{2}\right) \text { for } k=1, \ldots, K .
\end{aligned}
\end{aligned}
$$

- Let $z_{i} \in\{1, \ldots, K\}$ indicate the component that generated y_{i}
- Gibbs sample from full conditionals for $\mathbf{z}, \boldsymbol{q}$, and $\left(\theta_{1}, \ldots, \theta_{k}\right)$:
- Draw z_{i}, for $i=1, \ldots, n$, by

$$
p\left(z_{i}=k \mid \mathbf{y}, q, \theta\right) \propto q_{k} f\left(y_{i} \mid \theta_{k}\right)
$$

- Draw q by

$$
p(q \mid \mathbf{y}, \theta, \mathbf{z})=\operatorname{Dirichlet}\left(\alpha_{1}+n_{1}, \ldots, \alpha_{K}+n_{K}\right)
$$

where $n_{k}=\sum_{i=1}^{n} \mathbb{1}_{\left\{z_{i}=k\right\}}$

- Draw θ_{k}, for $k=1, \ldots, K$, from

$$
p\left(\theta_{k} \mid \mathbf{y}, q, z_{i}\right) \propto \pi\left(\theta_{k}\right) f\left(\mathbf{y}_{k} \mid \theta_{k}\right)
$$

where $\mathbf{y}_{k}=\left\{y_{i}: z_{i}=k\right\}$. This may require a Metropolis step, if conjugate prior s are not used.

Example: Galaxies

- Measurements taken from 82 galaxies in Corona Borealis region of space ${ }^{1}$
- Consider velocity in $\mathrm{km} / \mathrm{sec}$ for each galaxy
- Galaxies with a higher velocity are farther from earth.

[^0]
Example: Galaxies

- The distribution of velocities (\mathbf{y}) is very multimodal

Histogram of galaxies

http://www.ericfrazerlock.com/Mixture_Models_Rcode1.r

Example: Galaxies

- Model \mathbf{y} as a mixture of normal densities:

$$
p\left(y_{i} \mid q,\left(\mu_{k}, \sigma_{k}^{2}\right)_{k=1}^{K}\right) \stackrel{i i d}{=} \sum_{k=1}^{K} q_{k} \operatorname{Normal}\left(y_{i} \mid \mu_{k}, \sigma_{k}^{2}\right)
$$

for $i=1, \ldots, n$.

- Use a uniform Dirichlet prior for q

$$
q \sim \text { Dirichlet }(\mathbf{1})
$$

- Use a mildy informative normal-inverse-gamma prior for μ_{k}, σ_{k}^{2} :

$$
\begin{gathered}
\mu_{k} \stackrel{i i d}{\sim} \operatorname{Normal}\left(20000,10^{9}\right) \\
\sigma_{k}^{2} \stackrel{i i d}{\sim} \operatorname{IG}\left(2,10^{8}\right)
\end{gathered}
$$

Example: Galaxies

- Estimate for $K=4$ clusters
- For Gibbs sampling, initialize:
- Draw μ_{k}, σ_{k}^{2} from prior for $k=1, \ldots, 4$
- Set $q_{k}=1 / 4$ for $k=1, \ldots, 4$
- The full conditional for each $\mu_{k} \sigma_{k}^{2}$ can be drawn from a normal-inverse-gamma posterior.
- Run Gibbs sampling for $T=50000$ iterations

```
for(t in 1:T){ ##Run gibbs sampler
    ###Generate component indicators Z
    for(k in 1:K) probs[k,] = q[k]*dnorm(y,mu[k],sqrt(sigma2[k]))
    for(i in 1:n) Z[i] = which(rmultinom(1,1,probs[,i])==1)
    ###Generate qs
    nk = c()
    for(k in 1:K) nk[k] = sum(Z==k)
    q = rdirichlet(1,alpha+nk)
    ###generate mu_k, sigma2_k from normal-inverse-gamma posterior
    for(k in 1:K){
    a_post = a+nk[k]/2-1/2
    b_post = b+(1/2)*sum((y[Z==k]-mean(y[Z==k]) ) ^2)
    sigma2[k] = 1/rgamma(1,a_post,b_post)
    post_mu_mean = (sigma2[k]*mu0+tau2*sum(y[Z==k]))/(nk[k]*tau2+
    post_mu_var = sigma2[k]*tau2/(nk[k]*tau2+sigma2[k])
    mu[k] = rnorm(1,post_mu_mean,sqrt(post_mu_var))
}
```


R CODE (continued)

```
\#\#Store draws
draws_q[t,] = q
draws_mu[t,] = mu
draws_sigma2[t,] = sigma2
\#\#\#Compute density over grid
\(\mathrm{x}=\mathrm{seq}(\mathrm{from}=5000\), to=40000, length.out=200)
Dens \(=\operatorname{rep}(0,200)\)
for (k in 1:K) Dens = Dens+q[k]*dnorm(x,mu[k],sqrt(sigma2 [1
draws_dens[t,] = Dens
\}
```


Example: Galaxies

- Plot of posterior draws for $\mu_{1}, \mu_{2}, \mu_{3}, \mu_{4}$, last 500 iterations:

http://www.ericfrazerlock.com/Mixture_Models_Rcode1.r
- Chains cross - "label switching"

```
for ( \(t\) in 1:T) \{
    Order \(=\) order (draws_mu[t,])
    draws_q[t,] = draws_q[t,Order]
    draws_mu[t,] = draws_mu[t,Order]
    draws_sigma2[t,] = draws_sigma2[t,Order]
\}
```


Example: Galaxies

- Maintaining order $\mu_{1}<\mu_{2}<\mu_{4}<\mu_{4}$:

- Keep these labels for subsequent computation

Example: Galaxies

- Final 500 draws for $\sigma_{1}^{2}, \sigma_{2}^{2}, \sigma_{3}^{2}, \sigma_{4}^{2}$:

Example: Galaxies

- Final 500 draws for $q_{1}, q_{2}, q_{3}, q_{4}$:

Example: Galaxies

- Density estimate based on posterior draws:

Histogram of y

Example: Galaxies

- Component estimates:
- $\mu_{1}=11529, \sigma_{1}^{2}=28397532, q_{1}=0.10$
- $\mu_{2}=19501, \sigma_{2}^{2}=24032751, q_{2}=0.40$
- $\mu_{3}=22566, \sigma_{3}^{2}=18692368, q_{3}=0.40$
- $\mu_{4}=27818, \sigma_{4}^{2}=34797849, q_{4}=0.10$

Choosing K

- Number of components (i.e., clusters) K can be selected using standard model selection tools
- DIC, BIC, cross-validation, etc.
- Alternatively, put a prior on K
- Or, choose K large and use small values for α
- Some components will have negligable probability
- Letting $K \rightarrow \infty$ with $\alpha_{k}=c / K$ for all k gives a Dirichlet process.

[^0]: ${ }^{1}$ Roeder, K. Density estimation with confidence sets exemplified by superclusters and voids in galaxies. JASA 85, 617-624.

