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Multiple hypotheses/models

◮ Bayesian framework does not treat H0 and Ha differently

◮ Methodology may be extended to more than two conclusions

◮ Instead of “hypotheses”, compare evidence for “models”

◮ For data y, models M1, . . . ,Mm:

◮ Mi : y ∼ p(y | θi ,Mi ), with prior θi ∼ p(θi |Mi )

◮ With prior probabilities P(Mi ):

P(M1) + . . .+ P(Mm) = 1.
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Multiple hypotheses/models

◮ The posterior probability of model i is

p(Mi | y) =
P(Mi )p(y |Mi )󰁓m
j=1 P(Mj)p(y |Mj)

where

p(y |Mi ) =

󰁝
p(y | θi ,Mi )p(θi |Mi ) dθi .
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Model choice

◮ Actions A = {M1, . . . ,Mm}
◮ Under “0− 1” loss,

l(Mi , d(y)) = {d(y) ∕=Mi}

◮ Choose Mi with highest posterior probability P(Mi | y)

◮ Under “0− ci” loss,

l(Mi , d(y)) = ci {d(y) ∕=Mi}

◮ Posterior risk for choosing Mi is

ρ(pθ, a = Mi ) =
󰁛

j ∕=i

cjP(Mj | y)

◮ Choose Mi with highest weighted posterior ciP(Mi | y)
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Example: Placement test

◮ Reading ability is scaled to have a Normal(100, 225)
distribution over a student population

◮ A test assesses ability with normal error variance 64.

◮ Observe the test score y for a student

◮ p(y | µ) = Normal(µ, 64)

◮ p(µ) = Normal(100, 225)

◮ The posterior distribution for their true ability is

◮ p(µ | y) = Normal(22.15 + 0.779 y , 49.83)
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Example: Placement test

◮ A given student belongs to the

◮ remedial learning group if µ < 80 (R)

◮ standard learning group if 80 < µ < 120 (S)

◮ accelerated learning group if µ > 120 (A).

◮ Assume that a student has score y = 75

◮ p(µ | y) = Normal(80.56 , 49.83)

◮ Then, their posterior probability of belonging to each group is

◮ P(R | y = 75) = 0.468

◮ P(S | y = 75) = 0.532

◮ P(A | y = 75) ≈ 0

http://www.ericfrazerlock.com/Model_Comparison_Rcode1.r
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Example: Placement test

◮ Assign loss functions

◮ l(R , d(y)) = {d(y) ∕=R}

◮ l(S , d(y)) = 2 · {d(y) ∕=S}

◮ l(A, d(y)) = {d(y) ∕=A}

◮ For y = 75 :

◮ 2P(S | y = 75) = 1.064 > P(R | y = 75) = 0.468, and

◮ 2P(S | y = 75) = 1.064 > P(A | y = 75) ≈ 0, so

◮ So choose the standard group (S).
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Example: Placement test

◮ Decision rule for arbitrary y :

d(y) =

󰀻
󰁁󰀿

󰁁󰀽

R if y < 70.4

S if 70.4 ≤ y ≤ 129.6

A if y > 129.6
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Bayes factors for model comparison

◮ Recall the Bayes factor for model M1 over model M2 is

BF =
p(y |M1)

p(y |M2)

◮ A likelihood ratio test is based on maximum for each model:

Λ =
maxθ1p(y | θ1,M1)

maxθ2p(y | θ2,M2)

◮ Under point models M1 : θ = θ(1) and M2 : θ = θ(2):

BF = Λ =
p(y | θ(1))
p(y | θ(2))
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Bayesian Information Criterion

◮ Let pi be number of parameters in model Mi

◮ Let n be the data sample size

◮ A heuristic for assessing the fit of a model is the Bayesian
Information Criterion (BIC):

BIC (Mi ) = −2log(maxθip(y | θi ,Mi )) + pi logn,

◮ Smaller values are preferred

◮ log likelihood, with penalty for the dimension of the model
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Bayesian Information Criterion

◮ Likelihood ratio test usually based on transformed ratio

W = −2log

󰀗
maxθ1p(y | θ1,M1)

maxθ2p(y | θ2,M2)

󰀘

◮ The difference in BIC can be expressed in terms of W :

∆BIC = W − (p2 − p1)logn,

◮ ∆ denotes change (from M1 to M2)

◮ The likelihood ratio statistic corrected for dimension of each
model
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Bayesian Information Criterion

◮ For y = y1, y2, . . . yn iid, as n → ∞,

−2log(BF ) ≈ ∆BIC

under mild assumptions.

◮ Derivation:
https://statproofbook.github.io/P/bic-der.html

◮ ∆BIC may be easier to compute than the BF

◮ ∆BIC does not depend on prior distributions

◮ BIC also called Schwarz information criterion for G. Schwarz

◮ Original article:
http://projecteuclid.org/euclid.aos/1176344136
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Partial Bayes factors

◮ If p(θi |Mi ) is improper, then so is

p(y |Mi ) =

󰁝
p(y | θi ,Mi )p(θi | Mi )dθi

so Bayes factors involving Mi not well defined.

◮ Possible solution:

◮ Assume p(θ1 | y1) is proper for y1 = (y1, . . . , yi )

◮ Find conditional Bayes factor for y2 = (yi+1, . . . , yn)

BF (y2 | y1) =
p(y2 | y1,M1)

p(y2 | y1,M2)

◮ This is a Partial Bayes factor
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Example: traffic accidents

◮ Would like to estimate weekly accident rate at new traffic
intersection.

◮ Each week observe y ∼ Poisson(λ) accidents

◮ M1:Elicited prior from city planner: p1(λ) = Gamma(3, 2).

◮ M2: Compare with (improper) uniform prior p2(λ) = 1.

◮ Observe data for 5 weeks:

◮ y1 = 3, y2 = 6, y3 = 2, y4 = 4, y5 = 2
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Poisson-Gamma marginal

◮ If y1, . . . , yn
iid∼ Poisson(λ) and p(λ) = Gamma(α,β),

P(y) =
βαΓ(

󰁓
yi + α)

Γ(α)
󰁔

yi !(β + n)
󰁓

yi+α
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Example: traffic accidents

◮ p(y |M2) is improper

◮ Condition on y1:

◮ p(λ |M1, y1) = Gamma(y1 + 3, 3)

◮ p(λ |M2, y1) = Gamma(y1 + 1, 1)
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Example: traffic accidents

◮ Compute partial Bayes factor, conditioned on y1:

◮ p(y2 = 6, y3 = 2, y4 = 4, y5 = 2|M1, y1 = 3) = 0.000133

◮ p(y2 = 6, y3 = 2, y4 = 4, y5 = 2|M2, y1 = 3) = 0.000224

◮ The partial BF for M1 over M2 is

BF (y2, y3, y4, y5 | y1) = 0.596

http:

//www.ericfrazerlock.com/Model_Comparison_Rcode2.r

◮ Modest evidence that the elicited prior is not better than flat
prior
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Intrinsic Bayes factors

◮ Compute n partial Bayes factors:

BF ({yj}j ∕=i | yi )

for i = 1, . . . , n

◮ The average of these partial BFs is the intrinsic Bayes factor

◮ Could take arithmetic or geometric average

◮ If BF ({yj}j ∕=i | yi ) does not exist, condition on larger subsets
instead

◮ The traffic accident example has arithmetic intrinsic Bayes
factor 1.64.
http://www.ericfrazerlock.com/Model_Comparison_

Rcode2.r
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Fractional Bayes Factors

◮ An alternative to intrinsic BF is the fractional Bayes factor:

BFb =
p(y, b |M1)

p(y, b |M2)

where

p(y, b |Mi ) =

󰁕
p(y | θi ,Mi )p(θi | Mi ) dθi󰁕
p(y | θi ,Mi )bp(θi | Mi ) dθi

for b ∈ (0, 1).

◮ Often choose b = 1/n if BF1/n is well-defined

◮ Fractional BF satisfies likelihood principle, intrinsic BF does
not.

PUBH 8442: Bayes Decision Theory and Data Analysis Model Comparison



Fractional Bayes Factors

◮ Note that

p(y, b |Mi ) =

󰁝
p(y | θi ,Mi )

1−bp(θi | y, b,Mi ) dθi

where
p(θi | y, b,Mi ) ∝ p(y | θi ,Mi )

bp(θi | Mi )

◮ For {yj}nj=1 iid given θi ,

p(y | θi ,Mi )
b =

󰀵

󰀷
n󰁜

j=1

p(yj | θi ,Mi )

󰀶

󰀸
b

◮ So b = 1/n gives the geometric mean for the likelihood of one
observation.
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Example: traffic accidents (continued)

◮ Note that

p(λ | y, 1/n,M2) = Gamma(ȳ + 1, 1),

which gives

p(y, 1/n |M2) =
Γ(
󰁓

yi + 1)

(
󰁔

yi !)
n−1
n Γ(ȳ + 1)(n)

󰁓
yi+1
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Example: traffic accidents (continued)

◮ Similarly,

p(y, 1/n |M1) =
3ȳ+3Γ(

󰁓
yi + 3)

(
󰁔

yi !)
n−1
n Γ(ȳ + 3)(2 + n)

󰁓
yi+3

◮ For 5 weeks data, the fractional BF for M1 over M2 is

BF1/5 = 1.28

http://www.ericfrazerlock.com/Model_Comparison_

Rcode2.r
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