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Multiple hypotheses/models

» Bayesian framework does not treat Hy and H, differently
» Methodology may be extended to more than two conclusions
» Instead of “hypotheses”, compare evidence for “models”
» For data y, models My, ..., M,,:
> My ~ p(y|0;, M;), with prior 6; ~ p(0; | M;)
» With prior probabilities P(M;):

P(My) + ...+ P(My) = 1.
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Multiple hypotheses/models

» The posterior probability of model i is

P(M;)p(y | M;)
> P(My)p(y | M)

p(Mi|y) =

where
ply | Mi) = / ply | 61, M;)p(6; | M;) db;.
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Model choice

» Actions A= {My,..., Mpn}
» Under “0 — 1" loss,

I(M;, d(y)) =1 {aqy)y2m;}

» Choose M; with highest posterior probability P(M; | y)

» Under “0 — ¢;" loss,
I(M;, d(y)) = cil {a(y)=m;}

» Posterior risk for choosing M; is

p(po,a= M) =Y ¢P(M;|y)
J#i

» Choose M; with highest weighted posterior ¢;P(M; | y)
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Example: Placement test

» Reading ability is scaled to have a Normal(100, 225)
distribution over a student population

> A test assesses ability with normal error variance 64.
» Observe the test score y for a student

» p(y | #) = Normal(u,64)
» p(u) = Normal(100,225)

» The posterior distribution for their true ability is

» p(p]y) = Normal(22.15+ 0.779 y , 49.83)
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Example: Placement test

» A given student belongs to the
» remedial learning group if 1 < 80 (R)
» standard learning group if 80 < p < 120 (S)
» accelerated learning group if > 120 (A).

» Assume that a student has score y = 75

» p(p]y) = Normal(80.56, 49.83)

» Then, their posterior probability of belonging to each group is
» P(R|y=75)=0.468
> P(S|y=75)=0532
> P(Aly=T5)~0

http://www.ericfrazerlock.com/Model_Comparison_Rcodel.r

PUBH 8442: Bayes Decision Theory and Data Analysis


http://www.ericfrazerlock.com/Model_Comparison_Rcode1.r

Example: Placement test

» Assign loss functions
> (R, d(y)) =1 {a(y)#r}
> 1(S,d(y)) =21 {dgy)s}

> (A, d(y)) =1 (4(y)2a}

» Fory =75:
» 2P(S|y =75)=1.064 > P(R|y = 75) = 0.468, and
> 2P(S|y=75)=1.064 > P(A]y =75)~0, so

» So choose the standard group (S).
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Example: Placement test

» Decision rule for arbitrary y:

R ify<70.4
dy)={S if70.4<y<129.6
A ify>1206
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Bayes factors for model comparison

» Recall the Bayes factor for model My over model M, is

_ ply| M)

BF =
p(y | M2)

» A likelihood ratio test is based on maximum for each model:

_ maxelp(y | 01) Ml)
maX92p(y | 02) MZ)

» Under point models My : 0 = ) and M, : 6 = 6(2):

~ ply | 0W)

BF = \ =
p(y | 62)
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Bayesian Information Criterion

» Let p; be number of parameters in model M;
» Let n be the data sample size

» A heuristic for assessing the fit of a model is the Bayesian
Information Criterion (BIC):

BIC(M;) = —2log(maxg,p(y | 0, M;)) + pilogn,

» Smaller values are preferred

» log likelihood, with penalty for the dimension of the model

PUBH 8442: Bayes Decision Theory and Data Analysis



Bayesian Information Criterion

» Likelihood ratio test usually based on transformed ratio

maxg, p(y | 01, Ml)]
maxg, p(y | 62, M2)

W = —2log [

» The difference in BIC can be expressed in terms of W'

ABIC = W — (p2 — p1)logn,

» A denotes change (from M; to M)

» The likelihood ratio statistic corrected for dimension of each
model
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Bayesian Information Criterion

» Fory =y1,yo,...y,iid, as n — oo,
—2log(BF) ~ ABIC

under mild assumptions.

» Derivation:
https://statproofbook.github.io/P/bic-der.html

» ABIC may be easier to compute than the BF

» ABIC does not depend on prior distributions
» BIC also called Schwarz information criterion for G. Schwarz

» Original article:
http://projecteuclid.org/euclid.aos/1176344136
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Partial Bayes factors

» If p(0; | M;) is improper, then so is

ply | Mi) = / p(y | ;. Mi)p(8; | Mi)db);

so Bayes factors involving M; not well defined.
» Possible solution:

» Assume p(0; | y1) is proper for y1 = (y1,...,¥i)
» Find conditional Bayes factor for yo = (Vit1,- .-, ¥n)

p(y2 | y1, M1)

BF —
(vzy1) p(y2 | y1, Mo)

» This is a Partial Bayes factor
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Example: traffic accidents

» Would like to estimate weekly accident rate at new traffic
intersection.

» Each week observe y ~ Poisson(\) accidents

» M;:Elicited prior from city planner: p;(\) = Gamma(3,2).
» M,: Compare with (improper) uniform prior pp(A) = 1.

» Observe data for 5 weeks:

> y1=3)0=0y3=2,y1=4 ys =2
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Poisson-Gamma marginal

> If y1,...,¥n /;ig Poisson(A) and p(A) = Gamma(a, ),

BT yi + )
()T (5 + merte

P(y) = r
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Example: traffic accidents

» p(y | Mz) is improper

» Condition on y;:
> p(A| My, y1) = Gamma(y; + 3,3)

> p(A| Mo, y1) = Gamma(y; +1,1)
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Example: traffic accidents

» Compute partial Bayes factor, conditioned on y;:
> p(y2 =6,y3 =2,ya = 4,y5s = 2|My, y; = 3) = 0.000133
> p(ya=6,y3=2,ys = 4,y5s = 2|Ms, y; = 3) = 0.000224
» The partial BF for M1 over M2 is
BF(y2, 3, ya, y5 | y1) = 0.596

http:
//www.ericfrazerlock.com/Model_Comparison_Rcode2.r

» Modest evidence that the elicited prior is not better than flat
prior
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http://www.ericfrazerlock.com/Model_Comparison_Rcode2.r

Intrinsic Bayes factors

» Compute n partial Bayes factors:

BF({y;}izi | vi)
fori=1,...,n
» The average of these partial BFs is the intrinsic Bayes factor

» Could take arithmetic or geometric average

» |f BF({y;};»i | yi) does not exist, condition on larger subsets
instead

» The traffic accident example has arithmetic intrinsic Bayes
factor 1.64.
http://www.ericfrazerlock.com/Model_Comparison_
Rcode2.r
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Fractional Bayes Factors

» An alternative to intrinsic BF is the fractional Bayes factor:

ply, b| M)
BF, = 2.2 1)
* 7 ply, b| M)
where
S ply | 0i, Mi)p(6; | M;) do;
7b Mi =
Ply, b M) [ p(y | 6i, Mi)Pp(0; | M;) db;
for b € (0,1).

» Often choose b =1/n if BFy, is well-defined

» Fractional BF satisfies likelihood principle, intrinsic BF does
not.

PUBH 8442: Bayes Decision Theory and Data Analysis



Fractional Bayes Factors

» Note that
Py, b| M) = / Py | 6, M) ~2p(0; | y. b, M) d6;

where
p(0; |y, b, M;) o p(y | 6;, M;)°p(6; | M)

» For {y;}7_, iid given 6;,
p(y | 0i, Mi)® Hpme,,/w)

j=1

» So b =1/n gives the geometric mean for the likelihood of one
observation.
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Example: traffic accidents (continued)

» Note that
p(Aly.1/n,Mp) = Gamma(y + 1,1),
which gives
ply, 1/ | My) = oyt 1)

(ITyi) "% T(7 + 1)(n)X vt
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Example: traffic accidents (continued)

» Similarly,

3r(3yi+3)

,1/n| My) = 1
P = LG 3@ + s

» For 5 weeks data, the fractional BF for M; over Ms is
BFy /5 =1.28

http://www.ericfrazerlock.com/Model_Comparison_
Rcode2.r
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