Model Comparison

PUBH 8442: Bayes Decision Theory and Data Analysis

Eric F. Lock
UMN Division of Biostatistics, SPH
elock@umn.edu
02/22/2021

Multiple hypotheses/models

- Bayesian framework does not treat H_{0} and H_{a} differently
- Methodology may be extended to more than two conclusions
- Instead of "hypotheses", compare evidence for "models"
- For data \mathbf{y}, models M_{1}, \ldots, M_{m} :
- $M_{i}: \mathbf{y} \sim p\left(\mathbf{y} \mid \theta_{i}, M_{i}\right)$, with prior $\theta_{i} \sim p\left(\theta_{i} \mid M_{i}\right)$
- With prior probabilities $P\left(M_{i}\right)$:

$$
P\left(M_{1}\right)+\ldots+P\left(M_{m}\right)=1
$$

Multiple hypotheses/models

- The posterior probability of model i is

$$
p\left(M_{i} \mid \mathbf{y}\right)=\frac{P\left(M_{i}\right) p\left(\mathbf{y} \mid M_{i}\right)}{\sum_{j=1}^{m} P\left(M_{j}\right) p\left(\mathbf{y} \mid M_{j}\right)}
$$

where

$$
p\left(\mathbf{y} \mid M_{i}\right)=\int p\left(\mathbf{y} \mid \theta_{i}, M_{i}\right) p\left(\theta_{i} \mid M_{i}\right) d \theta_{i}
$$

Model choice

- Actions $\mathcal{A}=\left\{M_{1}, \ldots, M_{m}\right\}$
- Under " $0-1$ " loss,

$$
I\left(M_{i}, d(\mathbf{y})\right)=\mathbb{1}_{\left\{d(\mathbf{y}) \neq M_{i}\right\}}
$$

- Choose M_{i} with highest posterior probability $P\left(M_{i} \mid \mathbf{y}\right)$
- Under " $0-c_{i}$ " loss,

$$
I\left(M_{i}, d(\mathbf{y})\right)=c_{i} \mathbb{1}_{\left\{d(\mathbf{y}) \neq M_{i}\right\}}
$$

$\Gamma=\tilde{\pi} C_{j} 1 \quad . \rho\left(N_{j} \mid y\right)$

- Posterior risk for choosing M_{i} is $\sum_{j=1} C_{j} \sum_{\left\{M_{i} \neq N_{j}\right\}}$

$$
\rho\left(p_{\theta}, a=M_{i}\right)=\sum_{j \neq i} c_{j} P\left(M_{j} \mid \mathbf{y}\right)
$$

- Choose M_{i} with highest weighted posterior $c_{i} P\left(M_{i} \mid \mathbf{y}\right)$

Note $P\left(P_{B}, M_{a}\right)<P\left(P_{G}, M_{A}\right)$

$$
\begin{aligned}
\longleftrightarrow & \sum_{j \neq a} C_{j} P\left(m_{j} \mid y\right)<\sum_{j \neq b} C_{j} P\left(m_{j} \mid y\right) \\
\longleftrightarrow & C_{6} P\left(m_{6} \mid y\right) \subset C_{a} P\left(n_{a} \mid y\right)
\end{aligned}
$$

Example: IQ

- Human IQs have a $\operatorname{Normal}(100,225)$ distribution
- A given IQ test has normal error with variance 64.
- Observe the test score y for a student
- $p(y \mid \mu)=\operatorname{Normal}(\mu, 64)$
- $p(\mu)=\operatorname{Normal}(100,225)$
- The posterior distribution for their true IQ is
- $p(\mu \mid \mathbf{y})=\operatorname{Normal}(22.15+0.779 y, 49.83)$

Example: IQ

- A given student belongs to the
- remedial learning group if $\mathrm{IQ}<80(\mathrm{R})$
- standard learning group if $80<\mathrm{IQ}<120(\mathrm{~S})$
- accelerated learning group if IQ>120(A).
- Assume that a student has score $y=75$
- $p(\mu \mid \mathbf{y})=\operatorname{Normal}(80.56,49.83)$
- Then, their posterior probability of belonging to ${ }^{6} \mathrm{each}^{5} \mathrm{~g}^{6}$ roup ${ }^{\prime 2} \mathrm{is}^{\circ}$
- $P(R \mid y=75)=0.468$
- $P(S \mid y=75)=0.532$
- $P(A \mid y=75) \approx 0$
http://www.ericfrazerlock.com/Model_Comparison_Rcode1.r

Example: IQ

- Assign loss functions
- $I(R, d(\mathbf{y}))=\mathbb{1}_{\{d(\mathbf{y}) \neq R\}}$
- $I(S, d(\mathbf{y}))=2 \cdot \mathbb{1}_{\{d(\mathbf{y}) \neq S\}}$
- $I(A, d(\mathbf{y}))=\mathbb{1}_{\{d(\mathbf{y}) \neq A\}}$
- For $y=75$:
- $2 P(S \mid y=75)=1.064>P(R \mid y=75)=0.468$, and
- $2 P(S \mid y=75)=1.064>P(A \mid y=75) \approx 0$, so
- So choose the standard group (S).

Example: IQ

Decision rule for arbitrary y :

Choose R if $P(R>y)>2 \cdot P(S \mid Y)$

Bayes factors for model comparison

- Recall the Bayes factor for model M_{1} over model M_{2} is

$$
B F=\frac{p\left(\mathbf{y} \mid M_{1}\right)}{p\left(\mathbf{y} \mid M_{2}\right)}
$$

- A likelihood ratio test is based on maximum for each model:

$$
\Lambda=\frac{\max _{\theta_{1}} p\left(\mathbf{y} \mid \theta_{1}, M_{1}\right)}{\max _{\theta_{2}} p\left(\mathbf{y} \mid \theta_{2}, M_{2}\right)}
$$

- Under point models $M_{1}: \theta=\theta^{(1)}$ and $M_{2}: \theta=\theta^{(2)}$.

$$
B F=\Lambda=\frac{p\left(\mathbf{y} \mid \theta^{(1)}\right)}{p\left(\mathbf{y} \mid \theta^{(2)}\right)}
$$

Bayesian Information Criterion

- Let p_{i} be number of parameters in model M_{i}
- Let n be the data sample size
- A heuristic for assessing the fit of a model is the Bayesian Information Criterion (BIC):

$$
\operatorname{BIC}\left(M_{i}\right)=-2 \log \left(\max _{\theta_{i}} p\left(\mathbf{y} \mid \theta_{i}, M_{i}\right)\right)+p_{i} \log n,
$$

- Smaller values are preferred
- log likelihood, with penalty for the dimension of the model

Bayesian Information Criterion

- Likelihood ratio test usually based on transformed ratio

$$
W=-2 \log \left[\frac{\max _{\theta_{1}} p\left(\mathbf{y} \mid \theta_{1}, M_{1}\right)}{\max _{\theta_{2}} p\left(\mathbf{y} \mid \theta_{2}, M_{2}\right)}\right]
$$

- The difference in BIC can be expressed in terms of W :

$$
\Delta B I C=W-\left(p_{2}-p_{1}\right) \log n,
$$

- Δ denotes change (from M_{1} to M_{2})
- The likelihood ratio statistic corrected for dimension of each model

Bayesian Information Criterion

- For $\mathbf{y}=y_{1}, y_{2}, \ldots y_{n}$ iid, as $n \rightarrow \infty$,

$$
-2 \log (B F) \approx \triangle B I C
$$

under mild assumptions.

- Derivation: http://citeseerx.ist.psu.edu/viewdoc/ download?doi=10.1.1.723.8015\&rep=rep1\&type=pdf
- $\triangle B I C$ may be easier to compute than the $B F$
- $\triangle B I C$ does not depend on prior distributions
- BIC also called Schwarz information criterion for G. Schwarz
- Original article:
http://projecteuclid.org/euclid.aos/1176344136

Partial Bayes factors

- If $p\left(\theta_{i} \mid M_{i}\right)$ is improper, then so is

$$
p\left(\mathbf{y} \mid M_{i}\right)=\int p\left(\mathbf{y} \mid \theta_{i}, M_{i}\right) p\left(\theta_{i} \mid \mathrm{M}_{\mathrm{i}}\right) d \theta_{i}
$$

so Bayes factors involving M_{i} not well defined.

- Possible solution:
- Assume $p\left(\theta_{1} \mid \mathbf{y}_{1}\right)$ is proper for $\mathbf{y}_{1}=\left(y_{1}, \ldots, y_{i}\right)$
- Find conditional Bayes factor for $\mathbf{y}_{2}=\left(y_{i+1}, \ldots, y_{n}\right)$

$$
B F\left(\mathbf{y}_{2} \mid \mathbf{y}_{1}\right)=\frac{p\left(\mathbf{y}_{2} \mid \mathbf{y}_{1}, M_{1}\right)}{p\left(\mathbf{y}_{2} \mid \mathbf{y}_{1}, M_{2}\right)}
$$

- This is a Partial Bayes factor

Example: traffic accidents

- Would like to estimate weekly accident rate at new traffic intersection.
- Each week observe $y \sim \operatorname{Poisson}(\lambda)$ accidents
- M_{1} :Elicited prior from city planner: $p_{1}(\lambda)=\operatorname{Gamma}(3,2)$.
- M_{2} : Compare with (improper) uniform prior $p_{2}(\lambda)=1$.
- Observe data for 5 weeks:
- $y_{1}=3, y_{2}=6, y_{3}=2, y_{4}=4, y_{5}=2$

Poisson-Gamma marginal

- If $y_{1}, \ldots, y_{n} \stackrel{i i d}{\sim} \operatorname{Poisson}(\lambda)$ and $p(\lambda)=\operatorname{Gamma}(\alpha, \beta)$,

$$
\begin{aligned}
& p(\mathbf{y})=\frac{\beta^{\alpha} \Gamma\left(\sum y_{i}+\alpha\right)}{\Gamma(\alpha) \Pi y_{i}!(\beta+n)^{\sum y_{i}+\alpha}} \\
& P(\vec{y} \mid \lambda)=\frac{\lambda^{\varepsilon 火} e^{-n \lambda}}{\prod_{i=1}^{n} y_{i}!} \quad P(\lambda)=\lambda^{\alpha-1} e^{-\beta \lambda} \cdot \frac{\beta \alpha}{\Gamma(\alpha)} \\
& P(\vec{y})=\int_{0}^{\infty} P(\vec{y} \mid \lambda) \cdot P(\lambda) d \lambda=\frac{1}{\pi y_{i}!} \cdot \frac{\beta^{\alpha}}{P(\alpha)} \int \lambda^{\left(y_{i}+\alpha-1\right.} \\
& =\frac{1}{\pi y_{i}!} \cdot \frac{\beta^{\alpha}}{\Gamma(\alpha)} \cdot \frac{\Gamma\left(\Sigma y_{i}+\alpha\right)}{(\beta+n)^{\Sigma_{i}+\alpha}} \quad \underbrace{B+n}_{\operatorname{cosmn} a\left(\sum_{i} s_{i}+\alpha\right)})
\end{aligned}
$$

Example: traffic accidents

$$
\begin{aligned}
& \text { - } p\left(\mathbf{y} \mid M_{2}\right) \text { is improper } \\
& \left.\int f(y) M_{2}\right) d y=\iint P\left(y \mid \theta, M_{2}\right) P\left(\theta\left(M_{2}\right) d \theta d y\right. \\
& \text { "putin" }=\iiint^{d y d \theta} \\
& \left.=\int P(\theta) n_{2}\right) \frac{\int P\left(y \mid \theta, n_{2}\right) d y}{1} d \theta \\
& \left.\underset{p\left(\theta \mid M_{1}, y_{1}\right)=\operatorname{Gamma}\left(y_{1}+3, \overline{\overline{3}}\right)}{\lambda} \int P(\theta) M_{2}\right) d \theta=\infty \\
& \left.\begin{array}{c}
-p\left(\theta \mid M_{2}, y_{1}\right)=\operatorname{Gamma}\left(y_{1}+1,1\right) \\
\lambda
\end{array}\right) \frac{\lambda^{y_{1}} e^{-\lambda}}{y_{1}!} \cdot 1 \\
& \propto \operatorname{gaman}(y,+1,1)
\end{aligned}
$$

Example: traffic accidents

- Compute partial Bayes factor, conditioned on y_{1} :
- $p\left(y_{2}=6, y_{3}=2, y_{4}=4, y_{5}=2 \mid M_{1}, y_{1}=3\right)=0.000133$
- $p\left(y_{2}=6, y_{3}=2, y_{4}=4, y_{5}=2 \mid M_{2}, y_{1}=3\right)=0.000224$
- The partial BF for M1 over M2 is

$$
B F\left(y_{2}, y_{3}, y_{4}, y_{5} \mid y_{1}\right)=0.596
$$

http:
//www.ericfrazerlock.com/Model_Comparison_Rcode2.r

- Modest evidence that the elicited prior is not better than flat prior

Intrinsic Bayes factors

- Compute n partial Bayes factors:

$$
B F\left(\left\{y_{j}\right\}_{j \neq i} \mid y_{i}\right)
$$

for $i=1, \ldots, n$

- The average of these partial BFs is the intrinsic Bayes factor
- Could take arithmetic or geometric average
- If $B F\left(\left\{y_{j}\right\}_{j \neq i} \mid y_{i}\right)$ does not exist, condition on larger subsets instead
- The traffic accident example has arithmetic intrinsic Bayes factor 1.64.
http://www.ericfrazerlock.com/Model_Comparison_ Rcode2.r

