More on Decisions and Hypotheses

PUBH 8442: Bayes Decision Theory and Data Analysis

Eric F. Lock UMN Division of Biostatistics, SPH elock@umn.edu

02/17/2025

PUBH 8442: Bayes Decision Theory and Data Analysis More on Decisions and Hypotheses

Hypothesis decisions

Often, no need to conclude or decide on a given hypothesis

- Simply report strength of evidence given by p-value or posterior
- ▶ If necessary to choose, can use decision-theoretic framework
- Action space $\mathcal{A} = \{H_0, H_a\}$

A natural decision rule is

$$d_c(\mathbf{y}) = egin{cases} H_0 & ext{ if } P(H_0 \mid \mathbf{y}) > c \ H_a & ext{ otherwise} \end{cases}$$

for $c \in (0,1)$

• c = 1/2 chooses whichever hypothesis is more probable

- ► A type I error occurs when H₀ is true, but we conclude it is not.
- ► If we observe y and conclude H_a, the probability we made a type I error is P(H₀ | y)
- ► The standard definition of type I error rate, for a given rule, is $P(d(\mathbf{y}) \neq H_0 \mid H_0)$

• Type I error rate for rule d_c depends on context.

Example: tipping pennies (cont.)

Bayesian framework:

• Let $\theta = \text{probability the penny lands heads}$

$$\blacktriangleright H_0: \theta = 1/2$$

• $H_a: \theta \sim \text{Uniform}(0.5, 1)$

▶
$$P(H_0) = 0.5$$

Two different experiments, resulting in sampling distributions

•
$$X \sim \mathsf{NegativeBinomial}(1, \theta)$$

• $Y \sim \text{Binomial}(6, \theta)$

• Consider
$$d_{0.3}$$
: rule choosing H_0 if $P(H_0 | \mathbf{y}) > 0.3$

Example: tipping pennies (cont.)

x	$P(H_0 \mid x)$	y	$P(H_0 \mid y)$
0	0.67	0	0.88
1	0.60	1	0.84
2	0.52	2	0.78
3	0.43	3	0.69
4	0.34	4	0.51
5	0.26	5	0.26
6	0.18	6	0.05
7	0.13		
÷	:		

http://www.ericfrazerlock.com/More_on_Decisions_and_Hypothesis_ Testing_Rcode1.R

For experiment 1, $d_{0.3}(x) = H_a$ if $x \ge 5$

For experiment 2,
$$d_{0.3}(y) = H_a$$
 if $y \ge 5$

• For experiment 1, type I error rate is $P(X \ge 5 \mid H_0) = 0.031$

• For experiment 2, type I error rate is $P(Y \ge 5 | H_0) = 0.110$

A tentative vaccine trial for a new COVID variant completes

- ▶ 1 of 50 who received the vaccine were infected
- ▶ 7 of 50 who received a placebo were infected
- ▶ Conduct second stage trial, with n = 500 in each group

Possible Bayesian framework:

Let θ₁ = probability of vaccinated infection,
 θ₂ = probability of non-vaccinated infection

$$\blacktriangleright H_0: \theta_1 = \theta_2 = \theta \sim \mathsf{Beta}(9,93)$$

▶ H_a : $\theta_1 \sim \text{Beta}(2, 50), \theta_2 \sim \text{Beta}(8, 44)$ are independent

▶ $P(H_0) = 0.25$

Observe y₁ = 36 infections in vaccinated group, y₂ = 52 in non-vaccinated group

• The observed probability under H_0 is

$$P(y_1 = 36, y_2 = 52 \mid H_0) \approx 0.0002$$

http://www.ericfrazerlock.com/More_on_Decisions_and_ Hypothesis_Testing_Rcode2.r

• The observed probability under H_a is

$$P(y_1 = 36, y_2 = 52 \mid H_a) \approx 0.0001.$$

• The posterior probability of H_0 is

$$P(H_0 \mid y_1 = 36, y_2 = 52) \approx 0.42$$

• Our probability that the vaccine has an effect is 0.58.

• Less sure than before

By the beta-binomial model,

▶ Under H_0 ,

 $p(\theta_1 = \theta_2 = \theta \mid H_0, \mathbf{y}) = \text{Beta}(9 + y_1 + y_2, 93 + 1000 - y_1 - y_2)$

▶ Under *H*_a,

$$p(\theta_1 \mid H_a, \mathbf{y}) = \text{Beta}(2 + y_1, 50 + 500 - y_1)$$

and

$$p(heta_2 \mid H_a, \mathbf{y}) = \mathsf{Beta}(8+y_2, 44+500-y_2)$$

▶ The marginal distributions over H_0 , H_a for θ_1 , θ_2 are

$$p(heta_i \mid \mathbf{y}) = P(H_0 \mid \mathbf{y}) p(heta \mid H_0, \mathbf{y}) + P(H_a \mid \mathbf{y}) p(heta_i \mid H_a, \mathbf{y})$$

$$p(\theta_1 = \theta_2 = \theta \mid H_0, \mathbf{y}) = \mathsf{Beta}(97, 1005)$$

▶ Under *H*_a,

$$p(\theta_1 \mid H_a, \mathbf{y}) = \mathsf{Beta}(38, 514)$$

and

$$p(\theta_2 \mid H_a, \mathbf{y}) = \text{Beta}(60, 492)$$

▶ The marginal distributions over H_0 , H_a are

 $p(\theta_1 \mid \mathbf{y}) = 0.42 \operatorname{Beta}(97, 1005) + 0.58 \operatorname{Beta}(38, 514)$

and

$$m{
ho}(heta_2 \mid m{y}) = 0.42\, { ext{Beta}}(97, 1005) + 0.58\, { ext{Beta}}(60, 492)$$

• Marginal densities with (θ_1) and without (θ_2) vaccine:

- Decide whether to distribute the vaccine, after second trial.
 - Loss for distributing vaccines is $I(\theta, \text{distribute}) = 50000$
 - Loss for not distributing vaccines is

 $I(\theta, \text{do not distribute}) = 10^{6}(\theta_2 - \theta_1)$

Posterior risk for distributing is ρ(y, distribute) = 50000
 Posterior risk for not distributing is

 $ho(\mathbf{y}, \mathsf{do} \ \mathsf{not} \ \mathsf{distribute}) pprox 23100$

Choose not to distribute vaccine at this time.

• The posterior *odds* for H_0 over H_a is

$$\frac{P(H_0 \mid \mathbf{y})}{P(H_a \mid \mathbf{y})}$$

• The *Bayes factor* for H_0 over H_a is

$$BF = \frac{p(\mathbf{y} \mid H_0)}{p(\mathbf{y} \mid H_a)}$$

• The Bayes factor is the posterior odds scaled by the prior odds

$$BF = \frac{P(H_a)}{P(H_0)} \cdot \frac{P(H_0 \mid \mathbf{y})}{P(H_a \mid \mathbf{y})}$$

• It is a measure of "objective" evidence for H_0 over H_a

• Heuristic interpretation of Bayes factors (c. Harold Jeffreys):

BF	Strength of evidence		
< 1	Negative		
1 to 3	Barely worth mentioning		
3 to 10	Substantial		
10 to 30	Strong		
30 to 100	Very strong		
100	Decisive		

• Example: The Bayes factor for the second vaccine trial was

$$\frac{P(y_1 = 36, y_2 = 52 \mid H_0)}{P(y_1 = 36, y_2 = 52 \mid H_a)} \approx 2$$

Data gives little evidence for one hypothesis over the other.