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Hypothesis decisions

I Often, no need to conclude or decide on a given hypothesis

I Simply report strength of evidence given by p-value or posterior

I If necessary to choose, can use decision-theoretic framework

I Action space A = {H0,Ha}

I A natural decision rule is

dc(y) =

{
H0 if P(H0 | y) > c

Ha otherwise

for c ∈ (0, 1)

I c = 1/2 chooses whichever hypothesis is more probable
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Type I error

I A type I error occurs when H0 is true, but we conclude it is
not.

I If we observe y and conclude Ha, the probability we made a
type I error is P(H0 | y)

I The standard definition of type I error rate, for a given rule, is

P(d(y) 6= H0 | H0)

I Type I error rate for rule dc depends on context.
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Example: tipping pennies (cont.)

I Bayesian framework:

I Let θ = probability the penny lands heads

I H0 : θ = 1/2

I Ha : θ ∼ Uniform(0.5, 1)

I P(H0) = 0.5

I Two different experiments, resulting in sampling distributions

I X ∼ NegativeBinomial(1, θ)

I Y ∼ Binomial(6, θ)

I Consider d0.3: rule choosing H0 if P(H0 | y) > 0.3
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Example: tipping pennies (cont.)

x P(H0 | x) y P(H0 | y)

0 0.67 0 0.88
1 0.60 1 0.84
2 0.52 2 0.78
3 0.43 3 0.69
4 0.34 4 0.51
5 0.26 5 0.26
6 0.18 6 0.05
7 0.13
...

...

http://www.ericfrazerlock.com/More_on_Decisions_and_Hypothesis_

Testing_Rcode1.R

I For experiment 1, d0.3(x) = Ha if x ≥ 5

I For experiment 2, d0.3(y) = Ha if y ≥ 5
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Example: tipping pennies (cont.)

For experiment 1, type I error rate is P(X ≥ 5 | H0) = 0.031

For experiment 2, type I error rate is P(Y ≥ 5 | H0) = 0.110
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Example: Vaccine trial

I A tentative vaccine trial for a new COVID variant completes

I 1 of 50 who received the vaccine were infected

I 7 of 50 who received a placebo were infected

I Conduct second stage trial, with n = 500 in each group

I Possible Bayesian framework:

I Let θ1 = probability of vaccinated infection,
θ2 = probability of non-vaccinated infection

I H0 : θ1 = θ2 = θ ∼ Beta(9, 93)

I Ha : θ1 ∼ Beta(2, 50), θ2 ∼ Beta(8, 44) are independent

I P(H0) = 0.25

I Observe y1 = 36 infections in vaccinated group,
y2 = 52 in non-vaccinated group
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Example: Vaccine trial

The observed probability under H0 is

P(y1 = 36, y2 = 52 | H0) ≈ 0.0002

http://www.ericfrazerlock.com/More_on_Decisions_and_

Hypothesis_Testing_Rcode2.r
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Example: Vaccine trial

The observed probability under Ha is

P(y1 = 36, y2 = 52 | Ha) ≈ 0.0001.
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Example: Vaccine trial

The posterior probability of H0 is

P(H0 | y1 = 36, y2 = 52) ≈ 0.42

Our probability that the vaccine has an effect is 0.58.

Less sure than before
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Example: Vaccine trial

I By the beta-binomial model,

I Under H0,

p(θ1 = θ2 = θ |H0, y) = Beta(9 + y1 + y2, 93 + 1000− y1 − y2)

I Under Ha,

p(θ1 | Ha, y) = Beta(2 + y1, 50 + 500− y1)

and
p(θ2 | Ha, y) = Beta(8 + y2, 44 + 500− y2)

I The marginal distributions over H0,Ha for θ1, θ2 are

p(θi | y) = P(H0 | y)p(θ | H0, y) + P(Ha | y)p(θi | Ha, y)
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Example: Vaccine trial

I For y1 = 36 and y2 = 52,

I Under H0,

p(θ1 = θ2 = θ | H0, y) = Beta(97, 1005)

I Under Ha,
p(θ1 | Ha, y) = Beta(38, 514)

and
p(θ2 | Ha, y) = Beta(60, 492)

I The marginal distributions over H0,Ha are

p(θ1 | y) = 0.42 Beta(97, 1005) + 0.58 Beta(38, 514)

and

p(θ2 | y) = 0.42 Beta(97, 1005) + 0.58 Beta(60, 492)
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Example: Vaccine trial

Marginal densities with (θ1) and without (θ2) vaccine:

PUBH 8442: Bayes Decision Theory and Data Analysis More on Decisions and Hypotheses



Example: Vaccine trial

I Decide whether to distribute the vaccine, after second trial.

I Loss for distributing vaccines is l(θ, distribute) = 50000
I Loss for not distributing vaccines is

l(θ, do not distribute) = 106(θ2 − θ1)

I Posterior risk for distributing is ρ(θ, distribute) = 50000

I Posterior risk for not distributing is

ρ(θ, do not distribute) ≈ 23100

I Choose not to distribute vaccine at this time.
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Bayes factors

The posterior odds for H0 over Ha is

P(H0 | y)

P(Ha | y)

The Bayes factor for H0 over Ha is

BF =
p(y | H0)

p(y | Ha)

The Bayes factor is the posterior odds scaled by the prior odds

BF =
P(Ha)

P(H0)
· P(H0 | y)

P(Ha | y)

It is a measure of “objective” evidence for H0 over Ha
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Bayes factors

Heuristic interpretation of Bayes factors (c. Harold Jeffreys):

BF Strength of evidence

< 1 Negative
1 to 3 Barely worth mentioning

3 to 10 Substantial
10 to 30 Strong

30 to 100 Very strong
100 Decisive

Example: The Bayes factor for the second vaccine trial was

P(y1 = 36, y2 = 52 | H0)

P(y1 = 36, y2 = 52 | Ha)
≈ 2

Data gives little evidence for one hypothesis over the other.
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