More on Decisions and Hypotheses

PUBH 8442: Bayes Decision Theory and Data Analysis

Eric F. Lock
UMN Division of Biostatistics, SPH
elock@umn.edu

02/17/2021

Hypothesis decisions

- Often, no need to conclude or decide on a given hypothesis
- Simply report strength of evidence given by p-value or posterior
- If necessary to choose, can use decision-theoretic framework
- Action space $\mathcal{A}=\left\{H_{0}, H_{a}\right\}$
- A natural decision rule is

$$
d_{c}(\mathbf{y})= \begin{cases}H_{0} & \text { if } P\left(H_{0} \mid \mathbf{y}\right)>c \\ H_{a} & \text { otherwise }\end{cases}
$$

for $c \in(0,1)$

- $c=1 / 2$ chooses whichever hypothesis is more probable
- A type I error occurs when H_{0} is true, but we conclude it is not.
- If we observe \mathbf{y} and conclude H_{a}, the probability we made a type I error is $P\left(H_{0} \mid \mathbf{y}\right)$
- The standard definition of type I error rate, for a given rule, is

$$
P\left(d(\mathbf{y}) \neq H_{0} \mid H_{0}\right)
$$

- Type I error rate for rule d_{c} depends on context.

Example: tipping pennies (cont.)

- Bayesian framework:
- Let $\theta=$ probability the penny lands heads
- $H_{0}: \theta=1 / 2$
- $H_{a}: \theta \sim \operatorname{Uniform}(0.5,1)$
- $P\left(H_{0}\right)=0.5$
- Two different experiments, resulting in sampling distributions
- $X \sim \operatorname{NegativeBinomial}(1, \theta)$
- $Y \sim \operatorname{Binomial}(6, \theta)$
- Consider $d_{0.3}$: rule choosing H_{0} if $P\left(H_{0} \mid \mathbf{y}\right)>0.3$

Example: tipping pennies (cont.)

x	$P\left(H_{0} \mid x\right)$	y	$P\left(H_{0} \mid y\right)$
0	0.67	0	0.88
1	0.60	1	0.84
2	0.52	2	0.78
3	0.43	3	0.69
4	0.34	4	0.51
5	0.26	5	0.26
6	0.18	6	0.05
7	0.13		
\vdots	\vdots		

http://www.ericfrazerlock.com/More_on_Decisions_and_Hypothesis_ Testing_Rcode1.R

- For experiment $1, d_{0.3}(x)=H_{a}$ if $x \geq 5$
- For experiment $2, d_{0.3}(y)=H_{a}$ if $y \geq 5$

Example: tipping pennies (cont.)

- For experiment 1 , type I error rate is $P\left(X \geq 5 \mid H_{0}\right)=0.031$

$$
\begin{aligned}
& P\left(x=5 \mid H_{0}\right)+P\left(x=6 \mid H_{0}\right)+ \\
& =0,03)
\end{aligned}
$$

- For experiment 2, type I error rate is $P\left(Y \geq 5 \mid H_{0}\right)=0.110$

Example: Vaccine trial

- A tentative vaccine trial for a new COVID variant completes
- 1 of 50 who received the vaccine were infected $\theta \sim \operatorname{beta}(1,1)$
- 7 of 50 who received a placebo were infected $\theta_{1}, \theta \approx$ Beta
- Conduct second stage trial, with $n=500$ in each group
- Possible Bayesian framework:
$f\left(y, \mid \theta_{1}\right)=\operatorname{Bin}\left(n, \theta_{1}\right)$
- Let $\theta_{1}=$ probability of vaccinated infection,
$\theta_{2}=$ probability of non-vaccinated infection
- $H_{0}: \theta_{1}=\theta_{2}=\theta \sim \operatorname{Beta}(9,93)$
- $H_{a}: \theta_{1} \sim \operatorname{Beta}(2,50), \theta_{2} \sim \operatorname{Beta}(8,44)$ are independent
- $P\left(H_{0}\right)=0.25$
- Observe $y_{1}=36$ infections in vaccinated group,

$$
y_{2}=52 \text { in non-vaccinated group }
$$

Example: Vaccine trial

- The observed probability under H_{0} is

$$
-P\left(y_{1}=36, y_{2}=52 \mid H_{0}\right) \approx 0.0002
$$

http://www.ericfrazerlock.com/More_on_Decisions_and
Hypothesis_Testing_Rcode2.r

$$
\begin{aligned}
& \rightarrow= \\
& =\int_{0}^{1} P(y,=3 \\
& \text { 6(日) } P(y=521 \\
& 1 \theta) P(\theta) d \theta \\
& =\left(\begin{array}{cc}
50 & 0 \\
36
\end{array}\right)\left(\begin{array}{cc}
50 & 0 \\
5 & 2
\end{array}\right) \cdot \frac{1}{B(9,93)} \int_{0}^{1} \theta^{36}(1-\theta)^{464}(1-\theta)^{448} \\
& \int_{0}^{1} \frac{\theta^{96}(1-\theta)^{100 y}}{\alpha \operatorname{seta} \theta \theta} d \theta \\
& \alpha \text { Beta } A 7,1005)=\binom{506}{36}\binom{500}{5} \frac{B(97,1005)}{B(y, 9,3)}
\end{aligned}
$$

Example: Vaccine trial

- The observed probability under H_{a} is

$$
\begin{aligned}
& P\left(y_{1}=36, y_{2}=52 \mid H_{a}\right) \approx 0.0001 . \\
& \begin{array}{l}
T=\int_{0}^{1} \int_{0}^{1} P\left(y_{1}=36 \mid \theta_{1}\right) \cdot P\left(y_{2}=52 \mid \theta_{2}\right)-P\left(\theta_{1} \mid+\theta_{0}\right) \\
=\int_{0}^{1} P\left(y_{1}=36 \mid \theta_{1}\right) \cdot P\left(\theta_{1} \mid 1 t_{0}\right) d \theta_{1} \\
=P\left(\theta_{2} \mid+J_{1}\right) d \theta d \theta_{2} \\
=\ldots=\binom{500}{36} \cdot \frac{B(38,51 y)}{B(2,50)} \cdot\binom{500}{52} \cdot \frac{B(60,492)}{B(8,44)}
\end{array} \\
& \begin{array}{l}
T=\int_{0}^{1} \int_{0}^{1} P\left(y_{1}=36 \mid \theta_{1}\right) \cdot P\left(y_{2}=52 \mid \theta_{2}\right)-P\left(\theta_{1} \mid+\theta_{0}\right) \\
=\int_{0}^{1} P\left(y_{1}=36 \mid \theta_{1}\right) \cdot P\left(\theta_{1} \mid 1 t_{0}\right) d \theta_{1} \\
=P\left(\theta_{2} \mid+J_{1}\right) d \theta d \theta_{2} \\
=\ldots=\binom{500}{36} \cdot \frac{B(38,51 y)}{B(2,50)} \cdot\binom{500}{52} \cdot \frac{B(60,492)}{B(8,44)}
\end{array} \\
& \begin{array}{l}
T=\int_{0}^{1} \int_{0}^{1} P\left(y_{1}=36 \mid \theta_{1}\right) \cdot P\left(y_{2}=52 \mid \theta_{2}\right)-P\left(\theta_{1} \mid+\theta_{0}\right) \\
=\int_{0}^{1} P\left(y_{1}=36 \mid \theta_{1}\right) \cdot P\left(\theta_{1} \mid 1 t_{0}\right) d \theta_{1} \\
=P\left(\theta_{2} \mid+J_{1}\right) d \theta d \theta_{2} \\
=\ldots=\binom{500}{36} \cdot \frac{B(38,51 y)}{B(2,50)} \cdot\binom{500}{52} \cdot \frac{B(60,492)}{B(8,44)}
\end{array}
\end{aligned}
$$

Example: Vaccine trial

- The posterior probability of H_{0} is

$$
P\left(H_{0} \mid y_{1}=36, y_{2}=52\right) \approx 0.42
$$

- Our probability that the vaccine has an effect is 0.58 .
- Less sure than before

Example: Vaccine trial

- By the beta-binomial model,
- Under $H_{0}, \quad P\left(\theta_{1}, \theta_{2} \mid H_{0}, y\right) \neq P\left(\theta_{1} \mid+t_{0}, y\right) \cdot P\left(\theta_{2} \mid H_{0}\right)$

$$
p\left(\theta_{1}=\theta_{2}=\theta \mid H_{0}, \underline{y}\right)=\operatorname{Beta}\left(9+y_{1}+y_{2}, 93+1000-y_{1}-y_{2}\right)
$$

- Under H_{a},

$$
\left\{y_{1}, y_{2}\right\}
$$

$$
p\left(\theta_{1} \mid H_{a}, \mathbf{y}\right)=\operatorname{Beta}\left(2+y_{1}, 50+500-y_{1}\right)
$$

and

$$
p\left(\theta_{2} \mid H_{a}, \mathbf{y}\right)=\operatorname{Beta}\left(8+y_{2}, 44+500-y_{2}\right)
$$

- The marginal distributions over H_{0}, H_{a} for θ_{1}, θ_{2} are

$$
p\left(\theta_{i} \mid \mathbf{y}\right)=P\left(H_{0} \mid \mathbf{y}\right) p\left(\theta \mid H_{0}, \mathbf{y}\right)+P\left(H_{a} \mid \mathbf{y}\right) p\left(\theta_{i} \mid H_{a}, \mathbf{y}\right)
$$

Example: Vaccine trial

- For $y_{1}=36$ and $y_{2}=52$,
- Under H_{0},

$$
p\left(\theta_{1}=\theta_{2}=\theta \mid H_{0}, \mathbf{y}\right)=\operatorname{Beta}(97,1005)
$$

- Under H_{a},

$$
p\left(\theta_{1} \mid H_{a}, \mathbf{y}\right)=\operatorname{Beta}(38,514)
$$

and

$$
p\left(\theta_{2} \mid H_{a}, \mathbf{y}\right)=\operatorname{Beta}(60,492)
$$

- The marginal distributions over H_{0}, H_{a} are

$$
p\left(\theta_{1} \mid \mathbf{y}\right)=0.42 \operatorname{Beta}(97,1005)+0.58 \operatorname{Beta}(38,514)
$$

and

$$
p\left(\theta_{2} \mid \mathbf{y}\right)=0.42 \operatorname{Beta}(97,1005)+0.58 \operatorname{Beta}(60,492)
$$

Example: Vaccine trial

- Marginal densities with $\left(\theta_{1}\right)$ and without $\left(\theta_{2}\right)$ vaccine:

Example: Vaccine trial

- Decide whether to distribute the vaccine, after second trial.
- Loss for distributing vaccines is $I(\boldsymbol{\theta}$, distribute $)=50000$
- Loss for not distributing vaccines is

$$
I(\boldsymbol{\theta}, \text { do not distribute })=10^{6}\left(\theta_{2}-\theta_{1}\right)
$$

- Posterior risk for distributing is $\rho(\boldsymbol{\boldsymbol { F }}$, distribute $)=50000$
- Posterior risk for not distributing is $E(\operatorname{Beta}(a, b)]=\frac{a}{a+6}$

$$
\begin{aligned}
& E:=E_{\left.\theta_{1}, \theta_{2}\right)} \quad C_{7}^{\rho(\theta, \text { do not distribute }) \approx 23100} \begin{array}{l}
\quad E 10^{6}\left(\theta_{2}-\theta_{1}\right)=10^{6}\left(E \theta_{2}-E \theta_{1}\right)
\end{array} \\
& =0.42 \cdot \frac{97}{97+1005}+0.58 \cdot \frac{60}{492+60} \\
& -0.42 \cdot \frac{97}{97+005}-0.58 \cdot \frac{38}{38+514}
\end{aligned}
$$

Choose not to distribute vaccine at this time.

$$
\begin{aligned}
& \rightarrow 10^{6} \cdot \frac{\text { shrinkaye toward } H_{0}}{\substack{\text { s. } \\
\rightarrow 23}}\left(\frac{60}{552}-\frac{38}{552}\right) \\
& \rightarrow 200
\end{aligned}
$$

Bayes factors

- The posterior odds for H_{0} over H_{a} is

$$
\frac{P\left(H_{0} \mid \mathbf{y}\right)}{P\left(H_{a} \mid \mathbf{y}\right)}=\frac{\left.P\left(H_{0}\right) \cdot P(y) H_{0}\right)}{P\left(H_{0}\right) \cdot P\left(y \mid H_{0}\right)}
$$

- The Bayes factor for H_{0} over H_{a} is

$$
B F=\frac{p\left(\mathbf{y} \mid H_{0}\right)}{p\left(\mathbf{y} \mid H_{a}\right)}
$$

- The Bayes factor is the posterior odds scaled by the prior odds

$$
B F=\frac{P\left(H_{a}\right)}{P\left(H_{0}\right)} \cdot \frac{P\left(H_{0} \mid \mathbf{y}\right)}{P\left(H_{a} \mid \mathbf{y}\right)}
$$

- It is a measure of "objective" evidence for H_{0} over H_{a}

Bayes factors

- Heuristic interpretation of Bayes factors (c. Harold Jeffreys):

BF	Strength of evidence
<1	Negative
1 to 3	Barely worth mentioning
3 to 10	Substantial
10 to 30	Strong
30 to 100	Very strong
100	Decisive

- Example: The Bayes factor for the second vaccine trial was

$$
\frac{P\left(y_{1}=36, y_{2}=52 \mid H_{0}\right)}{P\left(y_{1}=36, y_{2}=52 \mid H_{a}\right)} \approx 2
$$

Data gives little evidence for one hypothesis over the other.

