More on Linear Models

PUBH 8442: Bayes Decision Theory and Data Analysis

Eric F. Lock UMN Division of Biostatistics, SPH elock@umn.edu

03/11/2024

PUBH 8442: Bayes Decision Theory and Data Analysis More on Linear Models

Example: Body Fat

▶ Use iid normal prior for $\beta'_i s$:

 $\beta \sim \text{Normal}(0, \sigma^2 \tau^2 I)$

•
$$IG(a, b)$$
 prior for σ^2

Choose a and b so that

$$E(\sigma^2) = 10, \ Var(\sigma^2) = 100$$

 \rightarrow *a* = 3, *b* = 20.

- How to choose the hyper-parameter τ^2 ?
- \blacktriangleright Could use subjective intuition, or put a prior on τ^2
- Alternatively, choose τ^2 "empirically"

$$\hat{\tau}^2 = \underset{\tau^2}{\operatorname{argmax}} p(\mathbf{y} \mid \tau^2)$$

Fix
$$\tau^2 = \hat{\tau}^2$$
 and proceed as if it were known.

Normal-inverse-gamma regression marginal

 For the normal-inverse-gamma regression model with β'_is iid with variance τ²,

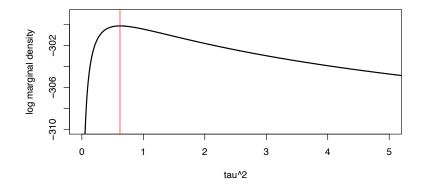
$$p(\mathbf{y} \mid \sigma^2, \tau^2) = N(\mathbf{0}, \sigma^2(I + \tau^2(XX^T)))$$

▶ The marginal for **y** is a multivariate t-distribution with 2*a* df:

$$p(\mathbf{y} \mid \tau^2) = MVT_{2a}\left(\mathbf{0}, \frac{b}{a}(I - \tau^2 X X^T)\right).$$

The multivariate t density is available in r under the 'mvtnorm' package

Example: Body Fat



http://www.ericfrazerlock.com/More_on_Linear_Models_Rcode1.r • $p(\mathbf{y} \mid \tau^2)$ is maximized at $\hat{\tau}^2 = 0.62$

Example: Body Fat

For hyperparameters $\tau^2 = 0.62$, a = 3 and b = 20, estimate

$$\tilde{\beta} = (X^T X + \frac{1}{0.62}I)^{-1} (X^T \mathbf{y})$$

▶ The marginal posterior for σ^2 is

$$p(\sigma^2 \mid \mathbf{y}) = IG(a_n, b_n)$$

where $a_n = 3 + \frac{100}{2}$ and $b_n = 20 + \frac{1}{2} [\mathbf{y}^T \mathbf{y} - \tilde{\beta}^T (X^T X + \frac{1}{0.62} I)^{-1} \tilde{\beta}]$

 \blacktriangleright The marginal posterior for β is a multivariate t-distribution

$$rac{eta_i - ilde{eta}_i}{\sqrt{rac{b_n}{a_n} ((X^T X + rac{1}{0.62}I)^{-1})_{ii}}} \sim t_{106}.$$

۲	Estimates	and	95%	credible	intervals	for	$\beta'_i s$:	
---	-----------	-----	-----	----------	-----------	-----	----------------	--

Variable	$ ilde{eta}_{i}$	95% credible interval
Age	1.193	(0.157, 2.229)
Weight	-0.465	(-4.127, 3.197)
Height	-0.380	(-1.602, 0.842)
Neck	-0.143	(-1.749, 1.463)
Chest	-0.642	(-2.999, 1.714)
Abdomen	8.704	(6.286, 11.123)
Ankle	0.042	(-1.300, 1.384)
Biceps	0.207	(-1.104, 1.519)
Wrist	-2.176	(-3.683, -0.668)

http://www.ericfrazerlock.com/More_on_Linear_ Models_Rcode1.r

Example: Body Fat (cont.)

Recall: Predict centered Y = BF% from 9 standardized predictors X from 100 adult males:

$$\mathbf{y} = \boldsymbol{\beta} X + \boldsymbol{\epsilon}$$

where $\epsilon \sim \text{Normal}(\mathbf{0}, \sigma^2 I)$

• Considered uninformative model M_1 :

$$p(\beta,\sigma^2) = \frac{1}{\sigma^2}$$

► And "shrinkage" model *M*₂:

$$\sigma^2 \sim IG(3, 20),$$

 $\beta \sim \text{Normal}(0, \sigma^2 \tau^2 I)$

Fixed τ^2 empirically:

$$\hat{\tau}^2 = \operatorname*{argmax}_{\tau^2} p(\mathbf{y} \mid \tau^2) = 0.62.$$

Example: Body Fat (cont.)

- Would like to compare models M_1 , M_2 .
- Hard to use the Bayes factor
 - Marginal distribution not defined for M_1
 - Inherent bias because \(\tau^2\) chosen to maximize marginal under M₂.
- ▶ Recall instead the log psuedo marginal likelihood:

$$LPML = \log \prod_{i=1}^{n} p(y_i \mid \mathbf{y}_{(i)})$$

where $p(y_i | \mathbf{y}_{(i)})$ is the conditional predictive distribution for y_i .

Example: Body Fat (cont)

 Under M₁ the conditional predictive distribution is a non-central t

$$p(y_i | \mathbf{y}_{(i)}) = T_{90} \left(\mathbf{x}_i \hat{\beta}_{(i)}, s^2 (1 + \mathbf{x}_i (X_{(i)}^T X_{(i)})^{-1} \mathbf{x}_i^T) \right)$$

 Under M₂ the conditional predictive distribution is a non-central t

$$p(y_i|\mathbf{y}_{(i)}) = T_{105}\left(\mathbf{x}_i\hat{\beta}_{(i)}, \frac{b_{n(i)}}{a_{n(i)}}(1 + \mathbf{x}_i(X_{(i)}^T X_{(i)} + (1/\tau^2)I)^{-1}\mathbf{x}_i^T)\right)$$

- Compute for fixed $\tau^2 = 0.62$
- ► Alternatively, recompute the MLE *î*² based on **y**_(i) for p(y_i | **y**_(i)) (adjusts for over-fitting).

Compute

- ▶ *LPML* for *M*1 is −288.774
- ▶ *LPML* for *M*2, with overall $\hat{\tau}^2$, is -288.6188
- ► LPML for M2, re-estimating ² for each sample, is -288.6155 http://www.ericfrazerlock.com/More_on_Linear_ Models_Rcode1.r
- Suggests there (may) be a slight benefit for using the shrinkage model
- Suggests that overfitting τ^2 is not a concern.