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Overview of posterior simulation methods

» Direct sampling
» Non-iterative indirect sampling:

» Importance sampling

» Rejection sampling

» Markov chain Monte Carlo sampling:

» Metropolis-Hastings algorithm

» Gibbs sampling

» And many more!
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Connections between methods

» Accepted samples under rejection sampling are direct
samples from posterior.

» Importance sampling is analogous to rejection sampling,
with rejection probabilities used as weights

» Metropolis-Hastings sampling includes an accept/reject step
similar to rejection sampling

» Gibbs sampling is a special case of Metropolis-Hastings
sampling, in which proposal density is conditional posterior.
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Combining MCMC methods

» Gibbs sampling requires direct sampling from full conditionals
» Otherwise, can combine with other sampling methods

» For example: use Gibbs sampling, with a MH step to sample
from intractible conditionals

» A single MH “sub-step” is sufficient for convergence:

» Draw 6,(-t) using MH with proposal density g(6; | 9?71)) and

hocp(0; | 09,01, 080, 0 y).
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Example: 1Q (cont.)

» Model
» Scores y;; ~ Normal(6;,5?) for individuals i = 1,..., m, trials
j=1...,n;

» 1Qs 6; ~ Normal(u,225) for i=1,....,m

» Use flat prior for u, Gamma(25,1) for o2
p(,0°) o (e

» The full conditional for o2 is proportional to

(0_2)247n/2exp —O' o _ZZ ylj i

i=1 j=1

» Not a well-known density.
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Example: 1Q (cont.)

» Use Gibbs sampling, with MH sub-step for o2
» Fort=1,...,T:

> Fori=1,...,20 draw 6 from

2(t—1),,(t—1) 25, 2(t—1) -2
' 5 _ o W + niTYy; o T
p(91|y7 g 7,U/) - Norm3| ( n,'7—2 + 0-2(1’71) ’ ni,r2 + o—2(t1)>

» Draw 2% using Metropolis step

» Draw ¢** from q(- |a2(t*1)) = NormaI(UQ(t*1)725)
p(o>*,0).u ) )

p(o2E=1) 610 61 y))

> Ifr>1, set 020 = g%,

if r<1,set ot = {

» Compute r =

0% with probability r
o2t=1) with probability 1 — r

» Draw u(®) from p(p |y, 6,02) = Normal(6(t=1), 225 /m)
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~ Example: 1Q (cont.)

e MH draws 02(1) 52(2)

draws_sigma_2
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@ Acceptance rate: 59%.
@ Autocorrelation of draws r = 0.765.

http://www.ericfrazerlock.com/More_on_MCMC_Rcodel.r

PUBH 8442: Bayes Decision Theory and Data Analysis


http://www.ericfrazerlock.com/More_on_MCMC_Rcode1.r

Example: 1Q (cont.)

o Estimated marginal posterior density for o, with prior:

Histogram of posterior draws, sigma*2
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Example: 1Q (co

o Gibbs draws p(®), 1@,
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@ Autocorrelation of draws r = 0.02.
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Example: 1Q (cont.)

o Estimated marginal posterior density for p:

Histogram of posterior draws, mu
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Assessing convergence

» MCMC iterations will eventually converge to their stationary
distribution (the posterior)

» Can be assessed by visual inspection of trace plots

» Plot of draws over the iterations for a parameter

» There should be no indication of a systematic trend, after
burn-in

» The log joint density can be used as a summary

» Consider log p(@%t), . ,fo),y) for each iteration t

» Would like to see this increase during convergence, then
appear stationary after burn-in
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Example: 1Q (cont.)

o Log-density trace plot:
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Assessing convergence: multiple initializations

» Repeat the chain in parallel from multiple initial conditions

» Trace plots of draws should be indistinguishable after burn-in.

» Would like initializations that are well-spread over parameter
space to assess robustness

» Initializations over-dispersed with respect to posterior

Var(initial 8s) > Var,(6)

» But don't want initial values too far away from posterior
concentration, as this can slow convergence

» Generating initial values from prior py is one approach
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Assessing convergence: multiple initializations

» Run MCMC chain from m different initializations
» Let 8(t4) be the t'th iteration from j'th chain
» Consider the overall (O) and within-chain (W) variance:

N m
0_ le_ 1 3OS (@) — gy

i=1 j=1

» If chains are indistinguishable, O and W should be nearly
identical.
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Assessing convergence: multiple initializations

» A common diagnostic is the scale reduction factor

VR[S

» There are different, related version of VR
> e.g., that given in (3.32) of Carlin&Louis

» First introduced by Gelman & Rubin, 1992

» Ideally R is close to 1.

» R > 1 implies draws vary more across chains than within
chains

» Suggests draws are still dependent on initial conditions

» Requiring V'R < 1.1 for draws after burn-in is a common
threshold.
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Example: 1Q (cont.)

» Run previous Gibbs-Metropolis sampler for m = 10 different
initializations

» T = 10000 total draws
» First 2000 used as burn-in: N = 8000

» Use proposal density with variance 4 for o draws

» Draw 02 from Gamma(25/2,1/2)

» Same expected value as prior, but more variance

» Draw (% from Normal(100,225).

http://www.ericfrazerlock.com/More_on_MCMC_Rcodel.r
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Example: 1Q (cont.)

o First 500 Gibbs draws o2(i1) 52(:2)  for three different
initializations i:

Sigma’2
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Example: 1Q (cont.)

@ First 500 Gibbs draws u(i’l),u(i’z), ... for three different
initializations i:
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@ Draws “mix" quickly
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Example: 1Q (cont.)

» For the first 100 draws:

> VR, =132
» /R, = 1.000

» For draws after burn-in, t = 2001, .., 10000,:

» VR, = 1.001

» /R, =1.000

» A good sign that our burn-in is sufficient!
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Assessing convergence

» For multiple chains, the draws after burn-in may be combined
across chains for posterior inference.

m x N total draws

» However, it is often preferred to simply run one long chain
» The burn-in stage for each chain may be considered “wasteful”
» Furthermore, it is hard to be 100% confident that different
initializations are well-spread over posterior support
» Different chains may appear to converge, but to the same local
mode
» There are many other convergence criteria

» Some do not require multiple chains, and some give a single
summary for all parameters

» For an overview see Cowles & Carlin, 1996
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Assessing variability due to simulation

» For A\ = g(0), consider the estimate for A based on MCMC

draws
N

A 2 1
E()\yy):)\N:NZ/\(t)

t=1

» Consider Var(\y), assuming draws are from the posterior (i.e.,
the MCMC has converged) but dependent.

» Define py, the autocorrelation between A(t) and A(t+K).

» The effective sample size, ESS, is defined by
ESS = N/k(N),

where -
) =142 (Y
k=1
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Assessing variability due to simulation

» The simulation variance of Ay may be approximated by

PN sf
Var(An) = FSS
where
N
A= 7y 200 -

» ESS can be computed by summing autocorrelations until they
become negligible (say, below 0.01).

» Often autocorrelation decays exponentially: px ~ pk

ESS ~ N( pl)
1+p;
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Example: 1Q (cont.)

» The first 10 autocorrelations for o2 draws are
p1 = 0.762 po = 0.592 p3 = 0.456 p4 = 0.354 ps = 0.277

pe = 0.213 p7 = 0.163 pg = 0.121 pg = 0.091 p1o = 0.063

» The first 10 powers of p; are
p1 = 0.762 p? = 0.581 p3 = 0.443 p} = 0.338 p3 = 0.258
P8 =0.197 p! = 0.150 p8 = 0.114 pJ = 0.087 pi° = 0.066

» Approximate

E55:N<1_p1> — 1076
1+ p1

> Estimate 62 = & SV | 5%t = 29.84
» Var(62) = s,2/ESS = 0.015
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