More on MCMC

PUBH 8442: Bayes Decision Theory and Data Analysis

Eric F. Lock
UMN Division of Biostatistics, SPH
elock@umn.edu
04/03/2024

Overview of posterior simulation methods

- Direct sampling
- Non-iterative indirect sampling:
- Importance sampling
- Rejection sampling
- Markov chain Monte Carlo sampling:
- Metropolis-Hastings algorithm
- Gibbs sampling
- And many more!

Connections between methods

- Accepted samples under rejection sampling are direct samples from posterior.
- Importance sampling is analogous to rejection sampling, with rejection probabilities used as weights
- Metropolis-Hastings sampling includes an accept/reject step similar to rejection sampling
- Gibbs sampling is a special case of Metropolis-Hastings sampling, in which proposal density is conditional posterior.

Combining MCMC methods

- Gibbs sampling requires direct sampling from full conditionals
- Otherwise, can combine with other sampling methods
- For example: use Gibbs sampling, with a MH step to sample from intractible conditionals
- A single MH "sub-step" is sufficient for convergence:
- Draw $\theta_{i}^{(t)}$ using MH with proposal density $q\left(\theta_{i} \mid \theta_{i}^{(t-1)}\right)$ and $h \propto p\left(\theta_{i} \mid \theta_{1}^{(t)}, \ldots, \theta_{i-1}^{(t)}, \theta_{i+1}^{(t-1)}, \ldots, \theta_{k}^{(t-1)}, \mathbf{y}\right)$.

Example: IQ (cont.)

- Model
- Scores $y_{i j} \sim \operatorname{Normal}\left(\theta_{i}, \sigma^{2}\right)$ for individuals $i=1, \ldots, m$, trials $j=1, \ldots, n_{i}$
- IQs $\theta_{i} \sim \operatorname{Normal}(\mu, 225)$ for $i=1, \ldots, m$
- Use flat prior for $\mu, \operatorname{Gamma}(25,1)$ for σ^{2}

$$
p\left(\mu, \sigma^{2}\right) \propto\left(\sigma^{2}\right)^{24} e^{-\sigma^{2}}
$$

- The full conditional for σ^{2} is proportional to

$$
\left(\sigma^{2}\right)^{24-n / 2} \exp \left\{-\sigma^{2}-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{m} \sum_{j=1}^{n_{i}}\left(y_{i j}-\theta_{i}\right)^{2}\right\}
$$

- Not a well-known density.

Example: IQ (cont.)

- Use Gibbs sampling, with MH sub-step for σ^{2}
- For $t=1, \ldots, T$:
- For $i=1, \ldots, 20$ draw $\theta_{i}^{(t)}$ from

$$
p\left(\theta_{i} \mid \mathbf{y}, \sigma^{2}, \mu\right)=\operatorname{Normal}\left(\frac{\sigma^{2(t-1)} \mu^{(t-1)}+n_{i} \tau^{2} \bar{y}_{i}}{n_{i} \tau^{2}+\sigma^{2(t-1)}}, \frac{\sigma^{2(t-1)} \tau^{2}}{n_{i} \tau^{2}+\sigma^{2(t-1)}}\right)
$$

- Draw $\sigma^{2(t)}$ using Metropolis step
- Draw $\sigma^{2 *}$ from $q\left(\cdot \mid \sigma^{2(t-1)}\right)=\operatorname{Normal}\left(\sigma^{2(t-1)}, 25\right)$
- Compute $r=\frac{p\left(\sigma^{2 *}, \theta^{(t)}, \mu^{(t-1)}, \mathbf{y}\right)}{\left.p\left(\sigma^{2(t-1)}, \theta^{(t)}, \mu^{(t-1)}, \mathbf{y}\right)\right)}$
- If $r \geq 1$, set $\sigma^{2(t)}=\sigma^{2 *}$;
if $r<1$, set $\sigma^{2(t)}=\left\{\begin{array}{l}\sigma^{2 *} \text { with probability } r \\ \sigma^{2(t-1)} \text { with probability } 1-r\end{array}\right.$
$-\operatorname{Draw} \mu^{(t)}$ from $p\left(\mu \mid \mathbf{y}, \theta, \sigma^{2}\right)=\operatorname{Normal}\left(\bar{\theta}^{(t-1)}, 225 / m\right)$

Example: IQ (cont.)

- MH draws $\sigma^{2(1)}, \sigma^{2(2)}, \ldots$:

- Acceptance rate: 59\%.
- Autocorrelation of draws $r=0.765$.
http://www.ericfrazerlock.com/More_on_MCMC_Rcode1.r

Example: IQ (cont.)

- Estimated marginal posterior density for σ^{2}, with prior:

Histogram of posterior draws, sigma^2

Example: IQ (cont.)

- Gibbs draws $\mu^{(1)}, \mu^{(2)}, \ldots$:

- Autocorrelation of draws $r=0.02$.

Example: IQ (cont.)

- Estimated marginal posterior density for μ :

Histogram of posterior draws, mu

Assessing convergence

- MCMC iterations will eventually converge to their stationary distribution (the posterior)
- Can be assessed by visual inspection of trace plots
- Plot of draws over the iterations for a parameter
- There should be no indication of a systematic trend, after burn-in
- The log joint density can be used as a summary
- Consider $\log p\left(\theta_{1}^{(t)}, \ldots, \theta_{k}^{(t)}, \mathbf{y}\right)$ for each iteration t
- Would like to see this increase during convergence, then appear stationary after burn-in

Example: IQ (cont.)

- Log-density trace plot:

- First 200 iterations

Assessing convergence: multiple initializations

- Repeat the chain in parallel from multiple initial conditions
- Trace plots of draws should be indistinguishable after burn-in.
- Would like initializations that are well-spread over parameter space to assess robustness
- Initializations over-dispersed with respect to posterior

$$
\operatorname{Var}(\text { initial } \theta s)>\operatorname{Var}_{\mathbf{y}}(\theta)
$$

- But don't want initial values too far away from posterior concentration, as this can slow convergence
- Generating initial values from prior p_{θ} is one approach

Assessing convergence: multiple initializations

- Run MCMC chain from m different initializations
- Let $\theta^{(t, j)}$ be the t^{\prime} th iteration from j^{\prime} th chain
- Consider the overall (O) and within-chain (W) variance:

$$
\begin{aligned}
O & =\frac{1}{N m-1} \sum_{i=1}^{N} \sum_{j=1}^{m}\left(\theta^{(i, j)}-\bar{\theta}^{(., .)}\right)^{2} \\
W & =\frac{1}{m} \sum_{j=1}^{m}\left[\frac{1}{N-1} \sum_{i=1}^{N}\left(\theta^{(i, j)}-\bar{\theta}^{(., j)}\right)^{2}\right]
\end{aligned}
$$

- If chains are indistinguishable, O and W should be nearly identical.

Assessing convergence: multiple initializations

- A common diagnostic is the scale reduction factor

$$
\sqrt{R}=\sqrt{\frac{O}{W}}
$$

- There are different, related version of \sqrt{R}
- e.g., that given in (3.32) of Carlin\&Louis
- First introduced by Gelman \& Rubin, 1992
- Ideally R is close to 1 .
- $R>1$ implies draws vary more across chains than within chains
- Suggests draws are still dependent on initial conditions
- Requiring $\sqrt{R}<1.1$ for draws after burn-in is a common threshold.

Example: IQ (cont.)

- Run previous Gibbs-Metropolis sampler for $m=10$ different initializations
- $T=10000$ total draws
- First 2000 used as burn-in: $N=8000$
- Use proposal density with variance 4 for σ^{2} draws
- Draw $\sigma^{2(0)}$ from $\operatorname{Gamma}(25 / 2,1 / 2)$
- Same expected value as prior, but more variance
- Draw $\mu^{(0)}$ from $\operatorname{Normal}(100,225)$.
http://www.ericfrazerlock.com/More_on_MCMC_Rcode1.r

Example: IQ (cont.)

- First 500 Gibbs draws $\sigma^{2(i, 1)}, \sigma^{2(i, 2)}, \ldots$ for three different initializations i :

Example: IQ (cont.)

- First 500 Gibbs draws $\mu^{(i, 1)}, \mu^{(i, 2)}, \ldots$ for three different initializations i :

- Draws "mix" quickly

Example: IQ (cont.)

- For the first 100 draws:
- $\sqrt{R_{\sigma^{2}}}=1.324$
- $\sqrt{R_{\mu}}=1.000$
- For draws after burn-in, $t=2001, . ., 10000$,:
- $\sqrt{R_{\sigma^{2}}}=1.001$
- $\sqrt{R_{\mu}}=1.000$
- A good sign that our burn-in is sufficient!

Assessing convergence

- For multiple chains, the draws after burn-in may be combined across chains for posterior inference.

$$
m \times N \text { total draws }
$$

- However, it is often preferred to simply run one long chain
- The burn-in stage for each chain may be considered "wasteful"
- Furthermore, it is hard to be 100% confident that different initializations are well-spread over posterior support
- Different chains may appear to converge, but to the same local mode
- There are many other convergence criteria
- Some do not require multiple chains, and some give a single summary for all parameters
- For an overview see Cowles \& Carlin, 1996

Assessing variability due to simulation

- For $\lambda=g(\theta)$, consider the estimate for λ based on MCMC draws

$$
\hat{E}(\lambda \mid \mathbf{y})=\hat{\lambda}_{N}=\frac{1}{N} \sum_{t=1}^{N} \lambda^{(t)}
$$

- Consider $\operatorname{Var}\left(\hat{\lambda}_{N}\right)$, assuming draws are from the posterior (i.e., the MCMC has converged) but dependent.
- Define ρ_{k}, the autocorrelation between $\lambda^{(t)}$ and $\lambda^{(t+k)}$.
- The effective sample size, ESS, is defined by

$$
E S S=N / \kappa(\lambda)
$$

where

$$
\kappa(\lambda)=1+2 \sum_{k=1}^{\infty} \rho_{k}(\lambda)
$$

Assessing variability due to simulation

- The simulation variance of $\hat{\lambda}_{N}$ may be approximated by

$$
\hat{\operatorname{Var}}\left(\hat{\lambda}_{N}\right)=\frac{s_{\lambda}^{2}}{E S S}
$$

where

$$
s_{\lambda}^{2}=\frac{1}{N-1} \sum_{t=1}^{N}\left(\lambda^{(t)}-\hat{\lambda}_{N}\right)^{2}
$$

- ESS can be computed by summing autocorrelations until they become negligible (say, below 0.01).
- Often autocorrelation decays exponentially: $\rho_{k} \approx \rho_{1}^{k}$
- This gives

$$
E S S \approx N\left(\frac{1-\rho_{1}}{1+\rho_{1}}\right)
$$

Example: IQ (cont.)

- The first 10 autocorrelations for σ^{2} draws are

$$
\begin{aligned}
& \rho_{1}=0.762 \rho_{2}=0.592 \rho_{3}=0.456 \rho_{4}=0.354 \rho_{5}=0.277 \\
& \rho_{6}=0.213 \rho_{7}=0.163 \rho_{8}=0.121 \rho_{9}=0.091 \rho_{10}=0.063
\end{aligned}
$$

- The first 10 powers of ρ_{1} are

$$
\begin{aligned}
& \rho_{1}=0.762 \rho_{1}^{2}=0.581 \rho_{1}^{3}=0.443 \rho_{1}^{4}=0.338 \rho_{1}^{5}=0.258 \\
& \rho_{1}^{6}=0.197 \rho_{1}^{7}=0.150 \rho_{1}^{8}=0.114 \rho_{1}^{9}=0.087 \rho_{1}^{10}=0.066
\end{aligned}
$$

- Approximate

$$
E S S=N\left(\frac{1-\rho_{1}}{1+\rho_{1}}\right)=1076
$$

- Estimate $\hat{\sigma}^{2}=\frac{1}{N} \sum_{t=1}^{N} \sigma^{2(t)}=29.84$
- $\operatorname{Var}\left(\hat{\sigma}^{2}\right)=s_{\sigma^{2}} / E S S=0.015$

