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Overview of posterior simulation methods

» Direct sampling
» Non-iterative indirect sampling:

» Importance sampling

» Rejection sampling

» Markov chain Monte Carlo sampling:

» Metropolis-Hastings algorithm

» Gibbs sampling

» And many more!
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Connections between methods

» Accepted samples under rejection sampling are direct
samples from posterior.

» Importance sampling is analogous to rejection sampling,
with rejection probabilities used as weights

» Metropolis-Hastings sampling includes an accept/reject step
similar to rejection sampling

» Gibbs sampling is a special case of Metropolis-Hastings
sampling, in which proposal density is conditional posterior.
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Combining MCMC methods

» Gibbs sampling requires direct sampling from full conditionals
» Otherwise, can combine with other sampling methods

» For example: use Gibbs sampling, with a MH step to sample
from intractible conditionals

» A single MH “sub-step” is sufficient for convergence:

» Draw Gft) using MH with proposal density g(6; | 9,071)) and
hocp(6; | 09,01, 080 6l y).
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Example: 1Q (cont.)

» Model
» Scores y;; ~ Normal(6;,0?) for individuals i = 1,..., m, trials
j = ]., NI

» 1Qs 0; ~ Normal(u,225) for i=1,...,m
» Use flat prior for , Gamma(25,1) for o2
2
P(M,Uz) o (0'2)246
» The full conditional for o2 is proportional to
1 m n;i
2\24—n/2 2 2
(0%)* "Pexp{ —0? — ?ZZ(YU_&)
i=1 j=1

» Not a well-known density.
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Example: 1Q (cont.)

» Use Gibbs sampling, with MH sub-step for o2
» Fort=1,...,T:

> Fori=1,...,20 draw 6" from

2(t—1),,(t—1) 25, 2(t—1) .2
' 5 . o o) + n;TYy; o T
p(0ily, o, u) = Normal ( mr? + o261 2 1 0—2(1.‘—1))

» Draw 2% using Metropolis step

» Draw 0% from g(- |az(t_1)) = Norma|(0'2(t_1)725)
p(02* ,H(r),p(tfl),y)
p(e2(t=1),00), 1 (=1 y))

> If r>1, set 028 = o2,

Fr o1 set 020 o* with probability r
1 , o =
o2~ with probability 1 — r

» Compute r =

» Draw p(®) from p(u |y, 0, 0?) = Normal(6(t=1) 225 /m)
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Example: 1Q (cont.)

e MH draws ¢2(1) 52(2) -
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@ Acceptance rate: 59%.
@ Autocorrelation of draws r = 0.765.

http://www.ericfrazerlock.com/More_on_MCMC_Rcodel.r
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Example: 1Q (cont.)

o Estimated marginal posterior density for o2, with prior:

Histogram of posterior draws, sigma”2
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Example: 1Q (cont.)

@ Gibbs draws u(l),u(z), A
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@ Autocorrelation of draws r = 0.02.
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Example: 1Q (cont.)

o Estimated marginal posterior density for p:

Histogram of posterior draws, mu
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Assessing convergence

» MCMC iterations will eventually converge to their stationary
distribution (the posterior)

» Can be assessed by visual inspection of trace plots

» Plot of draws over the iterations for a parameter

» There should be no indication of a systematic trend, after
burn-in

» The log joint density can be used as a summary

» Consider log p(th),... 9£ ,y) for each iteration t

» Would like to see this increase during convergence, then
appear stationary after burn-in
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Example: 1Q (cont.)

o Log-density trace plot:
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Assessing convergence: multiple initializations

» Repeat the chain in parallel from multiple initial conditions

» Trace plots of draws should be indistinguishable after burn-in.

» Would like initializations that are well-spread over parameter
space to assess robustness

» Initializations over-dispersed with respect to posterior

Var(initial 6s) > Vary(6)

» But don't want initial values too far away from posterior
concentration, as this can slow convergence

» Generating initial values from prior py is one approach

PUBH 8442: Bayes Decision Theory and Data Analysis



Assessing convergence: multiple initializations

» Run MCMC chain from m different initializations
» Let (t) be the t'th iteration from j'th chain

» Consider the overall (O) and within-chain (W) variance:

N m

=1 :1

N Z(g i) — gl)y2

1
W= —
m 4

||M3

» If chains are indistinguishable, O and W should be nearly
identical.
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Assessing convergence: multiple initializations

» A common diagnostic is the scale reduction factor

\/E_\/E.

» There are different, related version of VR
» e.g., that given in (3.32) of Carlin&Louis

» First introduced by Gelman & Rubin, 1992

» Ideally R is close to 1.

» R > 1 implies draws vary more across chains than within
chains

» Suggests draws are still dependent on initial conditions

» Requiring V'R < 1.1 for draws after burn-in is a common
threshold.
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Example: 1Q (cont.)

» Run previous Gibbs-Metropolis sampler for m = 10 different
initializations

» T = 10000 total draws
» First 2000 used as burn-in: N = 8000

» Use proposal density with variance 4 for o draws

» Draw 02 from Gamma(25/2,1/2)

» Same expected value as prior, but more variance

» Draw (% from Normal(100,225).

http://www.ericfrazerlock.com/More_on_MCMC_Rcodel.r
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Example: 1Q (cont.)

e First 500 Gibbs draws o2(i"1) 52(i2)  for three different
initializations i:
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Example: 1Q (cont.)

e First 500 Gibbs draws p("1), (2. for three different
initializations i
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@ Draws “mix" quickly
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Example: 1Q (cont.)

» For the first 100 draws:

> VR, =1324
» /R, =1.000

» For draws after burn-in, t = 2001, .., 10000,:

» VR, = 1.001

» /R, = 1.000

» A good sign that our burn-in is sufficient!
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Assessing convergence

» For multiple chains, the draws after burn-in may be combined
across chains for posterior inference.

m x N total draws

» However, it is often preferred to simply run one long chain
» The burn-in stage for each chain may be considered “wasteful”
» Furthermore, it is hard to be 100% confident that different
initializations are well-spread over posterior support
» Different chains may appear to converge, but to the same local
mode
» There are many other convergence criteria

» Some do not require multiple chains, and some give a single
summary for all parameters

» For an overview see Cowles & Carlin, 1996
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Assessing variability due to simulation

» For A\ = g(0), consider the estimate for A based on MCMC

draws
_ _ 2 : ()

» Consider Var(\y), assuming draws are from the posterior (i.e.,
the MCMC has converged) but dependent.

» Define py, the autocorrelation between A(Y) and A(t+K),

» The effective sample size, ESS, is defined by
ESS = N/k(N),

where

oo
) =142 p(N)
k=1
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Assessing variability due to simulation

» The simulation variance of Ay may be approximated by

PN 52
Var(Ay) = —ES)\S
where
N
A= gty L0 -

» ESS can be computed by summing autocorrelations until they
become negligible (say, below 0.01).

» Often autocorrelation decays exponentially: pjy ~ p’f
ESS ~ N (1 —P 1)
1+p
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Example: 1Q (cont.)

» The first 10 autocorrelations for o2 draws are
pP1 = 0.762 P2 = 0.592 pP3 = 0.456 P4 = 0.354 pP5 = 0.277

pe = 0.213 p7 = 0.163 pg = 0.121 pg = 0.091 p1o = 0.063

» The first 10 powers of p; are
p1 = 0.762 p? = 0.581 p3 = 0.443 p} = 0.338 p3 = 0.258
pS =0.197 p! = 0.150 p = 0.114 p] = 0.087 pi® = 0.066

» Approximate

ESS:N<1_p1> — 1076
1+pm

> Estimate 62 = & SV | 6%t = 29.84
> Var(32) = s,2/ESS = 0.015
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