More on Posterior Computation

PUBH 8442: Bayes Decision Theory and Data Analysis

Eric F. Lock UMN Division of Biostatistics, SPH elock@umn.edu

04/16/2024

PUBH 8442: Bayes Decision Theory and Data Analysis More on Posterior Computation

Gibbs Sampling Techniques

- Several techniques exist to reduce autocorrelation and improve convergence in Gibbs sampling.
- Augmented sampling introduces auxiliary variables to condition on during sampling.
 - ► E.g: To compute posterior for variables A and B, introduce C and sample from P(C | A, B), P(A | B, C) and P(B | A, C).
- Collapsed sampling marginalizes over some variables.
 - ► E.g: Rather than drawing from P(A | B, C), marginalize over C and sample from P(A | B).
- Blocked sampling draws from the joint distribution of variable sets rather than their separate full conditionals.
 - E.g.: Draw from P(A, B | C) rather than P(A | B, C) and P(B | C, A).

Example: Normal-Inverse-Gamma mixture sampling

▶ Draw $z_i \in \{1, ..., K\}$, to indicate the component that generated y_i , from $p(z_i = k | \mathbf{y}, q, \theta)$

Augmenting with Z_i's to facilitate sampling other parameters

- **b** Draw weights q from $p(q | \mathbf{y}, \theta, \mathbf{z})$.
- Draw θ_k = (μ_k, σ_k²) from normal-inverse gamma posterior for y_k = {y_i : z_i = k}:

Draw
$$\sigma_k^2 \mid \mathbf{z}, \mathbf{y}, q \sim IG(\mathbf{a} + n_k/2 - 1/2, b + 1/2||\mathbf{y}_k - ar{\mathbf{y}}_k||^2)$$

Draw
$$\mu_k \mid \sigma_k^2, \mathbf{z}, \mathbf{y}, \mathbf{q} \sim \text{Normal}\left(\frac{\sigma_k^2 \mu_0 + n_k \tau^2 \bar{y}_k}{n \tau^2 + \sigma_k^2}, \frac{\sigma_k^2 \tau^2}{n \tau^2 + \sigma_k^2}\right)$$

Hamiltonian Monte Carlo

- Hamiltonian Monte Carlo is an enhanced varient of Metropolis-Hastings sampling
- Proposals are motivated by Hamiltonian dynamics
 - Borrowing ideas of "potential" and "kinetic" energy in physics
- Informed by first-order gradient of posterior at each step
 - Allows draws to move more quickly to regions of higher posterior probability
- Often improves on Gibbs or MH sampling for complex posteriors
- Default estimation approach for the STAN software
- ▶ For an overview see this chapter by RM Neal

Approximate Bayesian Computing (ABC)

- Approximate Bayesian computing simulates new data y^{*} and assesses how well the simulated data fits the observed data y.
- Let **y** be discrete, with pmf specified by θ : $P(\mathbf{y} \mid \theta)$
- ▶ To draw from $p(\theta | \mathbf{y})$, consider the following algorithm:
 - ▶ Propose θ^* from prior $p(\theta)$
 - ► Draw \mathbf{y}^* from $P(\mathbf{y} \mid \theta^*)$
 - Accept θ^* if $\mathbf{y}^* = \mathbf{y}$
- ▶ The accepted θ^* represent direct draws from $p(\theta \mid \mathbf{y})$.

Approximate Bayesian Computing (ABC)

- ► If **y** is continuous, accept θ^* if **y**^{*} is "close" to **y**
- ▶ E.g., if $\mathbf{y} \in \mathbb{R}^n$, accept if

$$||\mathbf{y}^* - \mathbf{y}||^2 < \epsilon$$

▶ Generally accepted θ^* yield draws from $p(\theta \mid \mathbf{y})$ as $\epsilon \to 0$

- Can be very inefficient high rejection rates
 - Adaptive methods like this approach can help
- Only requires a way to generate samples \mathbf{y}^* given θ .
 - ► No need to fully specify the likelihood function $p(\mathbf{y} \mid \theta)$ or $P(\mathbf{y} \mid \theta)$
 - "likelihood-free"

 Given m socks are picked from laundry, and y are unique, how many pairs of socks are in the load?¹

🔆 🙁 Follow

That the 1st 11 socks in the laundry are each distinct suggests there are a lot more socks.

n 13 x 12 ···

¹Example motivated by: http://www.sumsar.net/blog/2014/10/ tiny-data-and-the-socks-of-karl-broman/

PUBH 8442: Bayes Decision Theory and Data Analysis More on Posterior Computation

• Let n_{pairs} be the total number of pairs of socks

- Uniform prior on $n_{\text{pairs}} \in \{6, \dots, 50\}$
- Observe y = 9 unique socks in first m = 12 taken out
- Would like to find the posterior $p(n_{\text{pairs}} | y)$
- Avoid specifying the likelihood $P(y \mid n_{pairs})$ directly

ABC approach:

- ▶ Draw n_{pairs}^* uniformly from $\{6, \ldots, 50\}$
- Simulate a sample of m = 12 socks without replacement from n_{pairs}^* pairs $(2 \times n_{\text{pairs}}^* \text{ total})$

Compute number of unique socks y*

▶ If
$$y^* = 9$$
, consider n^*_{pairs} a draw from $p(n_{\text{pairs}} | y)$

▶ Repeat above algorithm for 50,000 proposed draws

http:

//www.ericfrazerlock.com/More_on_Posterior_Computation_Rcode1.r

R CODE

```
m=12
v=9
T=50000
draws_n_pairs = c()
for(i in 1:T){
  n_pairs_star = sample(c(6:50).1)
  ## vector with two 1's, two 2's, etc.
  ##(each number represents a sock pair):
  sim_socks = rep(c(1:n_pairs_star),2)
  sock_sample = sample(sim_socks,m)
  y_star = length(unique(sock_sample))
  if(y_star==y) draws_n_pairs = c(draws_n_pairs,n_pairs_star)
}
```

hist(draws_n_pairs, freq=FALSE, breaks=20)

```
AcceptanceRate = length(draws_n_pairs)/T
```


Histogram of draws_n_pairs

draws_n_pairs

• Acceptance rate: 0.11

Variational Bayes

- A variational Bayes algorithm approximates the posterior
 p(θ | y) by a variational distribution q(θ)
- Where q(θ), or q(θ | ν), represents a family of distributions, usually of simpler form than p(θ | y)
- The approximation is determined by minimizing a distance D(q, p)
- In mean-field variational Bayes this distance is Kullback-Leibler divergence:

$$extsf{KL}(q||p) = \int q(heta) \log rac{q(heta)}{p(heta \mid \mathbf{y}) d heta}$$

► For expectation propagation, the KL-divergence is reversed: D = KL(p||q)

Mean-field variational Bayes

For mean-field variational Bayes we often assume the posterior can be factorized into *M* chunks:

$$q(heta) = \prod_{i=1}^M q_i(heta_i)$$

- Iteratively update q_i 's to maximize KL(q||p)
 - Uses the mean-field approximation and calculus of variations
 - Analogous to the EM-algorithm
- Converges to a local optimum
- ▶ For example, could optimize over

$$q(\theta_i) = N(\mu_i, \sigma_i^2)$$

Variational Bayes: Comments

- ▶ The accuracy of variational approximation *q* can depend on:
 - Appropriateness of simplifying assumptions on q
 - Convergence properties of the iterative algorithm may converge to a local mode that is not close to optimal
- Variational techniques tend to underestimate posterior uncertainty.
- Could use variational techniques to initialize MCMC sampling
- For more information see this tutorial by C. Fox and S. Roberts