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Gibbs Sampling Techniques

◮ Several techniques exist to reduce autocorrelation and improve
convergence in Gibbs sampling.

◮ Augmented sampling introduces auxiliary variables to
condition on during sampling.

◮ E.g: To compute posterior for variables A and B , introduce C
and sample from P(C | A,B), P(A | B ,C ) and P(B | A,C ).

◮ Collapsed sampling marginalizes over some variables.

◮ E.g: Rather than drawing from P(A | B ,C ), marginalize over
C and sample from P(A | B).

◮ Blocked sampling draws from the joint distribution of variable
sets rather than their separate full conditionals.

◮ E.g.: Draw from P(A,B | C ) rather than P(A | B ,C ) and
P(B | C ,A).

PUBH 8442: Bayes Decision Theory and Data Analysis More on Posterior Computation



Example: Normal-Inverse-Gamma mixture sampling

◮ Draw zi ∈ {1, . . . ,K}, to indicate the component that
generated yi , from p(zi = k | y, q, θ)
◮ Augmenting with Zi ’s to facilitate sampling other parameters

◮ Draw weights q from p(q | y, θ, z).

◮ Draw θk = (µk ,σ
2
k) from normal-inverse gamma posterior for

yk = {yi : zi = k}:

Draw σ2
k | z, y, q ∼ IG (a+ nk/2− 1/2, b + 1/2||yk − ȳk ||2)

Draw µk | σ2
k , z, y, q ∼ Normal
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◮ Blocking µk ,σ
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◮ Draw for σ2
k collapses over µk
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Hamiltonian Monte Carlo

◮ Hamiltonian Monte Carlo is an enhanced varient of
Metropolis-Hastings sampling

◮ Proposals are motivated by Hamiltonian dynamics

◮ Borrowing ideas of “potential” and “kinetic” energy in physics

◮ Informed by first-order gradient of posterior at each step

◮ Allows draws to move more quickly to regions of higher
posterior probability

◮ Often improves on Gibbs or MH sampling for complex
posteriors

◮ Default estimation approach for the STAN software

◮ For an overview see this chapter by RM Neal
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Approximate Bayesian Computing (ABC)

◮ Approximate Bayesian computing simulates new data y∗ and
assesses how well the simulated data fits the observed data y.

◮ Let y be discrete, with pmf specified by θ: P(y | θ)

◮ To draw from p(θ | y), consider the following algorithm:

◮ Propose θ∗ from prior p(θ)

◮ Draw y∗ from P(y | θ∗)

◮ Accept θ∗ if y∗ = y

◮ The accepted θ∗ represent direct draws from p(θ | y).
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Approximate Bayesian Computing (ABC)

◮ If y is continuous, accept θ∗ if y∗ is “close” to y

◮ E.g., if y ∈ n, accept if

||y∗ − y||2 < 󰂃

◮ Generally accepted θ∗ yield draws from p(θ | y) as 󰂃 → 0

◮ Can be very inefficient – high rejection rates

◮ Adaptive methods like this approach can help

◮ Only requires a way to generate samples y∗ given θ.

◮ No need to fully specify the likelihood function p(y | θ) or
P(y | θ)

◮ “likelihood-free”
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http://arxiv.org/abs/0805.2256


Example: socks

Given m socks are picked from laundry, and y are unique, how
many pairs of socks are in the load?1

!
1Example motivated by: http://www.sumsar.net/blog/2014/10/

tiny-data-and-the-socks-of-karl-broman/
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Example: socks

◮ Let npairs be the total number of pairs of socks

◮ Uniform prior on npairs ∈ {6, . . . , 50}

◮ Observe y = 9 unique socks in first m = 12 taken out

◮ Would like to find the posterior p(npairs | y)

◮ Avoid specifying the likelihood P(y | npairs) directly
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Example: socks

◮ ABC approach:

◮ Draw n∗pairs uniformly from {6, . . . , 50}

◮ Simulate a sample of m = 12 socks without replacement from
n∗pairs pairs (2× n∗pairs total)

◮ Compute number of unique socks y∗

◮ If y∗ = 9, consider n∗pairs a draw from p(npairs | y)

◮ Repeat above algorithm for 50, 000 proposed draws

http:

//www.ericfrazerlock.com/More_on_Posterior_Computation_Rcode1.r
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R CODE

m=12

y=9

T=50000

draws_n_pairs = c()

for(i in 1:T){

n_pairs_star = sample(c(6:50),1)

## vector with two 1’s, two 2’s, etc.

##(each number represents a sock pair):

sim_socks = rep(c(1:n_pairs_star),2)

sock_sample = sample(sim_socks,m)

y_star = length(unique(sock_sample))

if(y_star==y) draws_n_pairs = c(draws_n_pairs,n_pairs_star)

}

hist(draws_n_pairs, freq=FALSE, breaks=20)

AcceptanceRate = length(draws_n_pairs)/T
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Example: socks

Histogram of draws_n_pairs
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Acceptance rate: 0.11
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Variational Bayes

◮ A variational Bayes algorithm approximates the posterior
p(θ | y) by a variational distribution q(θ)

◮ Where q(θ), or q(θ | ν), represents a family of distributions,
usually of simpler form than p(θ | y)

◮ The approximation is determined by minimizing a distance
D(q, p)

◮ In mean-field variational Bayes this distance is
Kullback-Leibler divergence:

KL(q||p) =
󰁝

q(θ) log
q(θ)

p(θ | y)dθ

◮ For expectation propagation, the KL-divergence is reversed:
D = KL(p||q)
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Mean-field variational Bayes

◮ For mean-field variational Bayes we often assume the posterior
can be factorized into M chunks:

q(θ) =
M󰁜

i=1

qi (θi )

◮ Iteratively update qi ’s to maximize KL(q||p)
◮ Uses the mean-field approximation and calculus of variations

◮ Analogous to the EM-algorithm

◮ Converges to a local optimum

◮ For example, could optimize over

q(θi ) = N(µi ,σ
2
i )
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Variational Bayes: Comments

◮ The accuracy of variational approximation q can depend on:

◮ Appropriateness of simplifying assumptions on q

◮ Convergence properties of the iterative algorithm - may
converge to a local mode that is not close to optimal

◮ Variational techniques tend to underestimate posterior
uncertainty.

◮ Could use variational techniques to initialize MCMC sampling

◮ For more information see this tutorial by C. Fox and S.
Roberts
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http://www.orchid.ac.uk/eprints/40/1/fox_vbtut.pdf

