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Gibbs Sampling Techniques

» Several techniques exist to reduce autocorrelation and improve
convergence in Gibbs sampling.

» Augmented sampling introduces auxiliary variables to
condition on during sampling.

» E.g: To compute posterior for variables A and B, introduce C
and sample from P(C | A, B), P(A| B, C) and P(B | A, C).
» Collapsed sampling marginalizes over some variables.
» E.g: Rather than drawing from P(A| B, C), marginalize over
C and sample from P(A| B).
» Blocked sampling draws from the joint distribution of variable
sets rather than their separate full conditionals.

» E.g.. Draw from P(A, B| C) rather than P(A| B, C) and
P(B|C,A).
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Example: Normal-Inverse-Gamma mixture sampling

» Draw z; € {1,..., K}, to indicate the component that
generated y;, from p(z; = k |y, q,0)

» Augmenting with Z;'s to facilitate sampling other parameters
» Draw weights g from p(q|y,¥0,z).

» Draw 0 = (i, 02) from normal-inverse gamma posterior for
ye ={yitzi = k}:

Draw o7 | z,y,q ~ IG(a+ ng/2 — 1/2, b+ 1/2lyx — 7[?)

2 2 2.2
Oilo + NkT Y OgT )

Draw ik | 03,2 ~ Normal (
k-2, Y,9 2 2 ) 2 2
nTe + o nTe + oy

» Blocking /l,k,O'i

» Draw for o2 collapses over s
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Hamiltonian Monte Carlo

>

Hamiltonian Monte Carlo is an enhanced varient of
Metropolis-Hastings sampling

Proposals are motivated by Hamiltonian dynamics

» Borrowing ideas of “potential” and “kinetic” energy in physics

Informed by first-order gradient of posterior at each step

» Allows draws to move more quickly to regions of higher
posterior probability

Often improves on Gibbs or MH sampling for complex
posteriors
Default estimation approach for the STAN software

For an overview see this chapter by RM Neal
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http://mc-stan.org/
http://www.mcmchandbook.net/HandbookChapter5.pdf

Approximate Bayesian Computing (ABC)

» Approximate Bayesian computing simulates new data y* and
assesses how well the simulated data fits the observed data y.

» Let y be discrete, with pmf specified by 6: P(y | 0)
» To draw from p(@ | y), consider the following algorithm:

» Propose 6* from prior p(f)
» Draw y* from P(y | 6*)

» Accept 0* if y* =y

» The accepted 0* represent direct draws from p(6 | y).
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Approximate Bayesian Computing (ABC)

» If y is continuous, accept 6* if y* is “close” toy

» Eg, ifyeR", accept if

Iy —yl? <e

» Generally accepted 6* yield draws from p(f |y) as e — 0

» Can be very inefficient — high rejection rates

» Adaptive methods like this approach can help

» Only requires a way to generate samples y* given 6.

» No need to fully specify the likelihood function p(y | 6) or
P(y | 0)
» ‘“likelihood-free”
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http://arxiv.org/abs/0805.2256

Example: socks

@ Given m socks are picked from laundry, and y are unique, how
many pairs of socks are in the load?!

-#  Karl Broman fed Follow
\ r d

That the 1st 11 socks in the laundry are each
distinct suggests there are a lot more socks.

360/photo/1

!Example motivated by: http://www.sumsar.net/blog/2014/10/
tiny-data-and-the-socks-of-karl-broman/
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http://www.sumsar.net/blog/2014/10/tiny-data-and-the-socks-of-karl-broman/

Example: socks

» Let np,irs be the total number of pairs of socks

» Uniform prior on np,irs € {6,...,50}

» Observe y = 9 unique socks in first m = 12 taken out
» Would like to find the posterior p(npairs | y)

» Avoid specifying the likelihood P(y | npairs) directly
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Example: socks

» ABC approach:

» Draw n*,. _ uniformly from {6,...,50}

pairs

» Simulate a sample of m = 12 socks without replacement from

* . *
NS aivs PAIrs (2 x 7 total)

» Compute number of unique socks y*

*
pairs

» If y* =9, consider n’,, . a draw from p(npairs | ¥)

» Repeat above algorithm for 50,000 proposed draws

http:

//www.ericfrazerlock.com/More_on_Posterior_Computation_Rcodel.r
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http://www.ericfrazerlock.com/More_on_Posterior_Computation_Rcode1.r

R CODE

m=12

y=9

T=50000

draws_n_pairs = c()

for(i in 1:T){
n_pairs_star = sample(c(6:50),1)
## vector with two 1’s, two 2’s, etc.
## (each number represents a sock pair):
sim_socks = rep(c(l:n_pairs_star),2)
sock_sample = sample(sim_socks,m)
y_star = length(unique(sock_sample))
if (y_star==y) draws_n_pairs = c(draws_n_pairs,n_pairs_star)

}
hist(draws_n_pairs, freq=FALSE, breaks=20)

AcceptanceRate = length(draws_n_pairs)/T
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Example: socks

Histogram of draws_n_pairs

Density
0.00 0.02 0.04 0.06 0.08

10 20 30 40 50

draws_n_pairs

@ Acceptance rate: 0.11

PUBH 8442: Bayes Decision Theory and Data Analysis



Variational Bayes

» A variational Bayes algorithm approximates the posterior
p(0 | y) by a variational distribution q(6)

» Where g(0), or q(0 | v), represents a family of distributions,
usually of simpler form than p(6 | y)

» The approximation is determined by minimizing a distance
D(q,p)

» In mean-field variational Bayes this distance is
Kullback-Leibler divergence:

q(0)

KL(CIHP):/CI(G) |OgW

» For expectation propagation, the KL-divergence is reversed:
D = KL(pl|q)

PUBH 8442: Bayes Decision Theory and Data Analysis



Mean-field variational Bayes

» For mean-field variational Bayes we often assume the posterior
can be factorized into M chunks:

M
q(0) = [ ai(6:)
i=1

» lteratively update g;'s to maximize KL(q||p)

» Uses the mean-field approximation and calculus of variations

» Analogous to the EM-algorithm

» Converges to a local optimum

» For example, could optimize over

q(6;) = N(ui,o7)
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Variational Bayes: Comments

» The accuracy of variational approximation g can depend on:

» Appropriateness of simplifying assumptions on g

» Convergence properties of the iterative algorithm - may
converge to a local mode that is not close to optimal

» Variational techniques tend to underestimate posterior
uncertainty.

» Could use variational techniques to initialize MCMC sampling

» For more information see this tutorial by C. Fox and S.
Roberts
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http://www.orchid.ac.uk/eprints/40/1/fox_vbtut.pdf

