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Fractional Bayes Factors

I An alternative to intrinsic BF is the fractional Bayes factor:

BFb =
p(y, b |M1)

p(y, b |M2)

where

p(y, b |Mi ) =

∫
p(y | θi ,Mi )p(θi | Mi ) dθi∫
p(y | θi ,Mi )bp(θi | Mi ) dθi

for b ∈ (0, 1).

I Often choose b = 1/n if BF1/n is well-defined

I Fractional BF satisfies likelihood principle, intrinsic BF does
not.
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Fractional Bayes Factors

I Note that

p(y, b |Mi ) =

∫
p(y | θi ,Mi )

1−bp(θi | y, b,Mi ) dθi

where
p(θi | y, b,Mi ) ∝ p(y | θi ,Mi )

bp(θi | Mi )

I For {yj}nj=1 iid given θi ,

p(y | θi ,Mi )
b =

 n∏
j=1

p(yj | θi ,Mi )

b

I So b = 1/n gives the geometric mean for the likelihood of one
observation.
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Example: traffic accidents (continued)

I Note that

p(λ | y, 1/n,M2) = Gamma(ȳ + 1, 1),

which gives

p(y, 1/n |M2) =
Γ(
∑

yi + 1)

(
∏

yi !)
n−1
n Γ(ȳ + 1)(n)

∑
yi+1
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Example: traffic accidents (continued)

I Similarly,

p(y, 1/n |M1) =
3ȳ+3Γ(

∑
yi + 3)

(
∏

yi !)
n−1
n Γ(ȳ + 3)(2 + n)

∑
yi+3

I For 5 weeks data, the fractional BF for M1 over M2 is

BF1/5 = 1.28

http://www.ericfrazerlock.com/Model_Comparison_

Rcode2.r
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Cross-validated likelihood

I The conditional predictive distribution for yi is

p(yi | y(i)) =

∫
p(yi |θ, y(i))p(θ | y(i)) dθ

I y(i) = (y1, . . . , yi−1, yi+1, . . . , yn)

I Low p(yi | y(i)) indicates the model is a poor fit for yi

I The product
n∏

i=1

p(yi | y(i))

is sometimes called the pseudo marginal likelihood.

I Higher values indicate better overall model fit
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Bayesian residuals

I Use conditional predictive distribution to compute Bayesian
residuals:

r ′i = yi − E (Yi | y(i)),

I Standardized residual:

d ′i =
yi − E (Yi | y(i))√

Var(Yi | y(i))
,

I Can be used to detect systematic departures from model
assumptions
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Example: IQ (continued)

I Recall: IQs have Normal(100, 225) population distribution.

I An IQ test has assumed error variance 64.

I A sample of 100 randomly selected participants are each
tested 5 times

I Let yij be the score for the jth trial of the ith participant

I Then µi be the IQ of subject i

I yij ∼ Normal(µi , 64)
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Example: IQ (continued)

I Let y(ij) represent all scores but score j for subject i

I Let ȳi(j) represent the mean for all scores but j for subject i

p(µi | y(ij)) = Normal(6.64 + 0.934ȳi(j), 14.94)

and

p(yij | y(ij)) = Normal(6.64 + 0.934ȳi(j), 78.94)

I The standardized residuals are

d ′ij =
yij − 6.64− 0.934ȳi(j)

8.88
.
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Example: IQ (continued)

I Plot of d ′ij vs. E (Yij | y(ij)):

I Is the model appropriate?

I
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http://www.ericfrazerlock.com/More_on_model_comparison_and_

assessment_Rcode1.r
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Bayesian p-values

I Recall: the frequentist p-value based on observed statistic
T (y):

P(T (Y) ≥ T (y) | H0)

I Y and y are iid given θ

I The posterior predictive p-value under model

M0 : y ∼ p(y | θ), θ ∼ p(θ)

for statistic T (y, θ) is

pT = P(T (Y, θ) ≥ T (y, θ) |M0, y)

=

∫
P(T (Y, θ) ≥ T (y, θ) | θ)p(θ | y,M0) dθ

I Sometimes called a “Bayesian p-value”
I More generally, replace ’≥’ with ’more extreme than’.
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Bayesian p-values

I T can be a function of data (y) and parameters (θ)

I E.g., the goodness-of-fit statistic

T (y, θ) =
n∑

i=1

[yi − E (Yi | θ)]2

Var(Yi | θ)

I Low pT can indicate problems with M0

I The observed data are not plausible under the predictive model

I Little decision-theoretic justification

I Not recommended as sole basis for comparing models
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Example: parental remorse

I Interested in θ: proportion of parents who regret having
children 1

I Prior for θ: Beta(1, 9).

I In a small survey of n = 10 longtime parents, y = 9 say they
regret the choice

I Posterior for θ: Beta(10, 10)

I What is the posterior predictive p-value?

1Motivated by a newspaper survey:
https://userpages.umbc.edu/~nmiller/POLI300/stat353annlanders.pdf
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Beta-Binomial marginal

I If y ∼ Binomial(n, θ) and p(θ) = Beta(a, b),

P(y = k) =

(
n

k

)
B(a + k , b + n − k)

B(a, b)
,

where B is the Beta function.
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Example: parental remorse

I Prior and posterior densities for θ:

I
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Example: parental remorse

I The posterior predictive p-value is

P(Y ≥ 9 | y = 9) = 0.029.

I Suggests that our prior was overly strong / should have been
less optimistic about parental remorse.
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Bayesian p-values

I Posterior predictive p-values have been criticized for “using
the data twice”

I For reference distribution p(θ | y)

I For observed statistic T (y, θ).

I The practical implication of this has been debated:

I See https://xianblog.wordpress.com/2014/02/04/

posterior-predictive-p-values/ and related discussion
in comments.

I Alternatively, for training data y1 and test data y2, compute

p′T = P(T (Y2, θ) ≥ T (y2, θ) |M0, y1)
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