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Non-informative priors

I A non-informative prior is intended to convey no prior belief

I Let the data alone drive inference.

I Example: For Θ = {θ1, . . . , θK}

P(θ = θk) =
1

K
.

I Example: For Θ = [a, b],

p(θ) =
1

b − a
for a ≤ θ ≤ b.

I Note: If p(θ) = c ∀ θ ∈ Θ, then

p(θ | y) ∝ p(y | θ),

and so the mode of p(θ | y) is the MLE for θ.
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Improper priors

I A “prior” that is not a true probability distribution is improper

I An improper prior can result in an improper posterior

I Example: p(θ) = 1 for θ ∈ (−∞,∞).

I Improper because
∫
p(θ) dθ = ∞

I If
∫
p(y | θ) dθ <∞,

p(θ | y) =
p(y | θ)∫
p(y | θ) dθ

is still proper.

I Improper priors should be avoided if possible.

I But can give reasonable results, especially if posterior is proper.
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Example: Venusian surface

I A spacecraft lands on the planet Venus, and captures a small
surface sample.

I The radioactivity of the sample is measured, as the frequency
of particle emission.

I y = 60 particle emissions are observed in one minute.

I Then the spacecraft dies, due to high surface temperature and
pressure.

I Infer θ, the average particle emissions per minute.

y ∼ Poisson(θ).
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Example: Venusian surface

Consider the uniform prior

p(θ) = c for θ > 0.

NOTE: p(θ) is improper.

Posterior IS proper:

p(θ | y = 60) = Gamma(61, 1)
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Example: Venusian surface

Prior and posterior densities, given y = 60:
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Code:
http://www.ericfrazerlock.com/More_on_priors_Rcode1.r
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Example: Venusian surface

I Radioactivity by emission frequency is often given on log scale:

γ = log(θ).

I A uniform prior for θ implies prior p∗(γ) ∝ eγ for γ:
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I Prior is not “non-informative” for γ!
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Jeffreys priors

I For a one-parameter model p(y | θ), the Fisher information is

I (θ) = −Ey | θ

[
d2

dθ2
logp(y | θ)

]
.

I The Jeffreys prior is proportional to the square root of I :

p(θ) ∝ [I (θ)]1/2

I Jeffreys priors are invariant under all one-to-one
transformations:

I If γ = h(θ) and p(θ) is Jeffreys for θ, then the induced prior
for γ is Jeffreys for γ.

I Satisfy other “non-informative” properties (Box & Tiao, Sec
1.3).
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Jeffreys priors

I For multi-parameter θ = (θ1, . . . , θK ), the Fisher information
is a matrix with i , j element

Iij(θ) = −Ey | θ

[
d2

dθiθj
log p(y | θ)

]
.

I And the Jeffreys prior is

p(θ) ∝ [det I (θ)]1/2
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Jeffreys priors

For a Poisson(θ) model, the Jeffreys prior for θ is

p(θ) ∝ 1√
θ

For a Binomial(n, θ) model, the Jeffreys prior for θ is

p(θ) = Beta(0.5, 0.5)

Homework
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Elicited priors

I Often desire an expert to elicit the prior for a given experiment

I Issues:

I Human intuition generally approximates uncertainty poorly

I Non-statistician experts have little knowledge of probability
distributions

I Have expert create a probability histogram

I Or specify certain desirable properties (e.g., quantiles) and
choose a known distribution to match those properties.

I Prior elicitation software:
http://www.tonyohagan.co.uk/shelf/.
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Poisson-gamma model

Let y ∼ Poisson(θ) and θ ∼ Gamma(α, β):

p(θ) ∝ θα−1e−βθ.

Then, p(θ | y) = Gamma(α + y , β + 1)
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Example: Venusian surface (cont.)

I An expert in planetary radioactivity is specifies percentiles for
radioactivity of Venusian surface

I 10th percentile: 1, 90th percentile: 80

I “80 percent sure that between 1 and 80 parts will emit per
minute”

I Fit a Gamma prior using this information.

I Code: http:

//www.ericfrazerlock.com/More_on_priors_Rcode2.r

I θ ∼ Gamma(0.62, 0.02)

I Posterior after y = 60:

Gamma(60.62, 1.02)
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Example: Venusian surface (cont.)

Prior and posterior densities, given y = 60:
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