More on Priors

PUBH 8442: Bayes Decision Theory and Data Analysis

Eric F. Lock UMN Division of Biostatistics, SPH elock@umn.edu

01/27/2021

PUBH 8442: Bayes Decision Theory and Data Analysis More on Priors

Non-informative priors

A non-informative prior is intended to convey no prior belief
 Let the data alone drive inference.

• Example: For $\Theta = \{\theta_1, \dots, \theta_K\}$

$$P(\theta=\theta_k)=\frac{1}{K}.$$

• Example: For $\Theta = [a, b]$,

$$p(heta) = rac{1}{b-a}$$
 for $a \leq heta \leq b$.

▶ Note: If $p(\theta) = c \forall \theta \in \Theta$, then

$$p(\theta \mid \mathbf{y}) \propto p(\mathbf{y} \mid \theta),$$

and so the mode of $p(\theta \mid \mathbf{y})$ is the MLE for θ .

▶ A "prior" that is not a true probability distribution is *improper*

An improper prior can result in an improper posterior

- ▶ Example: $p(\theta) = 1$ for $\theta \in (-\infty, \infty)$.
 - Improper because $\int p(\theta) d\theta = \infty$
 - ▶ If $\int p(\mathbf{y} \mid \theta) d\theta < \infty$,

$$p(\theta \mid \mathbf{y}) = rac{p(\mathbf{y} \mid \theta)}{\int p(\mathbf{y} \mid \theta) \, d\theta}$$

is still proper.

Improper priors should be avoided if possible.

▶ But can give reasonable results, especially if posterior is proper.

$$SP(y|o)P(o) < \infty$$

- A spacecraft lands on the planet Venus, and captures a small surface sample.
- The radioactivity of the sample is measured, as the frequency of particle emission.
- > y = 60 particle emissions are observed in one minute.
- Then the spacecraft dies, due to high surface temperature and pressure.
- **•** Infer θ , the average particle emissions per minute.

 $y \sim \text{Poisson}(\theta)$.

Example: Venusian surface

• Consider the uniform prior

$$p(\theta) = c \text{ for } \theta > 0.$$
• NOTE: $p(\theta)$ is improper. $\int c = \infty$

$$P(y = k | \theta) = \frac{e^{-\theta} \theta^{\kappa}}{k!}$$

$$P(y = k | \theta) = \frac{e^{-\theta} \theta^{\kappa}}{k!}$$

$$P(y = k | \theta) = \frac{e^{-\theta} \theta^{\kappa}}{k!}$$

$$P(y = k | \theta) = \frac{e^{-\theta} \theta^{\kappa}}{k!}$$
• Posterior IS proper:

$$p(\theta \mid y = 60) = \text{Gamma}(61, 1)$$

• **Prior** and posterior densities, given y = 60:

Uniform Prior

Code:

http://www.ericfrazerlock.com/More_on_priors_Rcode1.r

PUBH 8442: Bayes Decision Theory and Data Analysis More on Priors

Example: Venusian surface

Radioactivity by emission frequency is often given on log scale:

 $\gamma = \log(\theta).$

• A uniform prior for θ implies prior $p^*(\gamma) \propto e^{\gamma}$ for γ :

Uniform prior on theta

For a one-parameter model $p(\mathbf{y} \mid \theta)$, the Fisher information is

$$I(\theta) = -E_{\mathbf{y} \mid \theta} \left[\frac{d^2}{d\theta^2} \log p(\mathbf{y} \mid \theta) \right]$$

► The Jeffreys prior is proportional to the square root of *I*:

$$p(heta) \propto [I(heta)]^{1/2}$$

- Jeffreys priors are invariant under all one-to-one transformations:
 - If γ = h(θ) and p(θ) is Jeffreys for θ, then the induced prior for γ is Jeffreys for γ.

 Satisfy other "non-informative" properties (Box & Tiao, Sec 1.3).

Fact D: For
$$Y = h(x)$$
 and x has density $P(x)_{j}$
density of y is $\left|\frac{dx}{dy}\right|P(x)$ where $x=h^{-1}(9)$.
 \therefore need to show $\left(\mathcal{I}(y)\right)^{\frac{1}{2}} = \left[\mathcal{I}(\theta)\right]^{\frac{1}{2}} \cdot \left|\frac{d\theta}{dy}\right|$
Fact \supseteq : $E_{y_{10}} \frac{d\log P(y_{10})}{d\theta} = 0$
 $\frac{d\theta}{d\theta} + \frac{d\theta}{d\theta} + \frac{d$

Jeffreys priors

For multi-parameter $\theta = (\theta_1, \dots, \theta_K)$, the Fisher information is a matrix with i, j element

$$I_{ij}(\theta) = -E_{\mathbf{y} \mid \theta} \left[\frac{d^2}{d\theta_i \theta_j} \log p(\mathbf{y} \mid \theta) \right].$$

$$p(heta) \propto [\det I(heta)]^{1/2}$$

Jeffreys priors

• For a Poisson(θ) model, the Jeffreys prior for θ is

$$p(heta) \propto rac{1}{\sqrt{ heta}}$$

• For a Binomial (n, θ) model, the Jeffreys prior for θ is

$$p(\theta) = \mathsf{Beta}(0.5, 0.5)$$

• Homework

PUBH 8442: Bayes Decision Theory and Data Analysis More on Priors

- Often desire an expert to elicit the prior for a given experiment
- Issues:
 - Human intuition generally approximates uncertainty poorly
 - Non-statistician experts have little knowledge of probability distributions
- Have expert create a probability histogram
- Or specify certain desirable properties (e.g., quantiles) and choose a known distribution to match those properties.
- Prior elicitation software: http://www.tonyohagan.co.uk/shelf/.

Poisson-gamma model

• Let $y \sim \text{Poisson}(\theta)$ and $\theta \sim \text{Gamma}(\alpha, \beta)$:

$$p(heta) \propto heta^{lpha - 1} e^{-eta heta}.$$

• Then, $p(\theta \mid y) = \text{Gamma}(\alpha + y, \beta + 1)$

Example: Venusian surface (cont.)

- An expert in planetary radioactivity is specifies percentiles for radioactivity of Venusian surface
 - ▶ 10th percentile: 1, 90th percentile: 80
 - "80 percent sure that between 1 and 80 parts will emit per minute"
- ▶ Fit a Gamma prior using this information.
 - Code: http: //www.ericfrazerlock.com/More_on_priors_Rcode2.r
 - \blacktriangleright $\theta \sim \text{Gamma}(0.62, 0.02)$
- Posterior after y = 60:

Gamma(60.62, 1.02)

Example: Venusian surface (cont.)

• **Prior** and posterior densities, given y = 60:

Gamma(0.62,0.02) Prior