The Normal-Gamma Model

PUBH 8442: Bayes Decision Theory and Data Analysis

Eric F. Lock
UMN Division of Biostatistics, SPH
elock@umn.edu

02/26/2024

Conjugate normal: σ^2 known

- ▶ Assume $\mathbf{y} = y_1, \dots, y_n$ are iid Normal (μ, σ^2) , and σ^2 known.
- ▶ If $p(\mu) = \text{Normal}(\mu_0, \tau^2)$, then

$$p(\mu \mid \mathbf{y}) = \text{Normal}\left(\frac{\sigma^2 \mu_0 + n\tau^2 \bar{y}}{\sigma^2 + n\tau^2}, \frac{\sigma^2 \tau^2}{\sigma^2 + n\tau^2}\right)$$

- ▶ The *precision* is the reciprocal of the variance.
- ► Here, the posterior precision is $\frac{1}{\tau^2} + \frac{n}{\sigma^2}$:

$$\left(\frac{1}{\tau^2} + \frac{n}{\sigma^2}\right)^{-1} = \frac{\sigma^2 \tau^2}{\sigma^2 + n\tau^2}$$

- $ightharpoonup \frac{1}{\tau^2}$ is the prior precision
- $ightharpoonup \frac{n}{\sigma^2}$ is the data precision

Conjugate normal: μ known

- Assume $\mathbf{y} = y_1, \dots, y_n$ are iid Normal (μ, σ^2) , with μ known and σ^2 unknown.
- ▶ Would like to make inference about σ^2
- ► Sampling model / likelihood:

$$p(\mathbf{y} \mid \sigma^2) \propto (\sigma^2)^{-n/2} \exp \left\{ -\frac{n}{2\sigma^2} \left[\frac{1}{n} \sum_{i=1}^n (y_i - \mu)^2 \right] \right\}$$

- ► The conjugate prior for σ^2 is the *inverse gamma* (IG) distribution
- ▶ If $X \sim \text{Gamma}(\alpha, \beta)$, then $1/X \sim IG(\alpha, \beta)$.

Conjugate normal: μ known

▶ For prior $p(\sigma^2) = IG(\alpha, \beta)$, $\alpha > 0, \beta > 0$,

$$p(\sigma^2) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} (\sigma^2)^{-(\alpha+1)} e^{-(\beta/\sigma^2)}$$

▶ Then, the posterior for σ^2 is

$$p(\sigma^2 \mid \mathbf{y}) = IG\left(\alpha + \frac{n}{2}, \beta + \frac{n}{2}W\right)$$

where $W = \frac{1}{n} \sum (y_i - \mu)^2$. Conjugate!

Conjugate normal: μ known

▶ For $\sigma^2 \sim IG(\alpha, \beta)$, the prior mean and variance are

$$E(\sigma^2) = \frac{\beta}{\alpha - 1} \text{ for } \alpha > 1$$

$$Var(\sigma^2) = \frac{\beta^2}{(\alpha - 1)^2(\alpha - 2)} \text{ for } \alpha > 2$$

▶ Solving for α , β :

$$lpha = rac{[E(\sigma^2)]^2}{var(\sigma^2)} + 2 \quad ext{and} \quad eta = E(\sigma^2) \left\{ rac{[E(\sigma^2)]^2}{var(\sigma^2)} + 1
ight\}$$

▶ Could determine α, β by prior guesses for $E(\sigma^2)$ and $var(\sigma^2)$.

Conjugate normal: μ and σ^2 unknown

- Assume $\mathbf{y} = y_1, \dots, y_n$ are iid Normal (μ, σ^2) , with μ unknown and σ^2 unknown.
- ▶ A conjugate prior for μ and σ^2 is

$$p(\sigma^2) \sim IG(\alpha, \beta)$$
 $p(\mu \mid \sigma^2) \sim \mathsf{Normal}(\mu_0, \sigma^2/\lambda)$

- ▶ Note: prior for μ depends on σ^2 .
- λ reflects confidence/influence of prior (larger λ , more confidence in prior hypermean μ_0).

Conjugate normal: μ and σ^2 unknown

 \blacktriangleright Given the normal-normal model with σ^2 known,

$$p(\mu \mid \sigma^2, \mathbf{y}) = N\left(\frac{\lambda \mu_0 + n\bar{y}}{n + \lambda}, \frac{\sigma^2}{n + \lambda}\right)$$

 \blacktriangleright And, with μ known,

$$p(\sigma^2 \mid \mu, \mathbf{y}) = IG\left(\alpha + \frac{n}{2} + \frac{1}{2}, \beta + \frac{n}{2}W + \lambda \frac{(\mu - \mu_0)^2}{2}\right)$$

▶ One can show, integrating out μ , that

$$p(\sigma^2 \mid \mathbf{y}) = IG\left(\alpha + \frac{n}{2}, \beta + \frac{1}{2}\sum_{i}(y_i - \bar{y})^2 + \frac{\lambda n(\bar{y} - \mu_0)^2}{2(\lambda + n)}\right)$$