
Final Exam [30 pts]
Monday, May 13th, 2019 1:30–3:30 pm

PUBH 8442: Bayes Decision Theory and Data Analysis

Give your final answers in simplified, closed form wherever possible. However, partial
credit will be awarded for incomplete solutions. Good luck!

1. Linear Model with Measurement Error [18 pts]
In what follows, assume that all variables are independent unless otherwise specified.
Consider a linear model with measurement error in the predictors. Data (Xi, Yi)
are observed, where

Yi = βX̃i + εi,

εi ∼ N(0, σ2), and

X̃i | Xi ∼ N(Xi, τ
2) for i = 1, . . . , n.

Assume σ2 is known. We use an improper flat prior for β : p(β) = 1 ∀β ∈ R, and
in parts (a-d) we use an inverse-gamma prior for τ 2, IG(a, b):

p(τ 2) =
ba

Γ(a)
(τ 2)−(a+1)e−(b/τ2).

Let Y = (Y1, . . . , Yn), X = (X1, . . . , Xn), and X̃ = (X̃1, . . . , X̃n).

(a) (3 points) What is the marginal distribution of Y given X, β and τ 2: p(Y |
β, τ 2,X)?
Each Yi is normally distributed with mean

E(Yi) = βE(X̃i) + E(εi) = βXi

and variance

Var(Yi) = β2Var(X̃i) + Var(εi)) = β2τ 2 + σ2.

Their joint marginal distribution is Y ∼ MVN(βX, (β2τ 2 + σ2)In×n).

(b) (3 points) What is the conditional posterior distribution of β, p(β | X̃, τ 2,X,Y)?
Note that X̃β ∼ MVN(Y, σ2In×n), and multiplying both sides by (X̃T X̃)−1X̃T

yields

β ∼ MVN((X̃T X̃)−1X̃TY, (X̃T X̃)−1σ2).

(c) (3 points) What is the conditional posterior distribution of τ 2, p(τ 2 | X̃, β,X,Y)?
Note that Xi − X̃i ∼ N(0, τ 2), so by the normal-inverse-gamma model, the

conditional posterior for τ 2 is IG
!
a+ n

2
, β + 1

2

"
(Xi − X̃i)

2
#
. This may also

be derived directly, using the density functions:

p(τ 2 | X̃, β,X,Y) ∝ IG(τ 2; a, b)
n$

i=1

N(X̃i;Xi, τ
2)

∝ (τ 2)−(a+1)e−(b/τ2) · (τ 2)−n/2e−1/(2τ2)
!

(Xi−X̃i)
2

∝ (τ 2)−(a+n/2+1)e−(1/τ2)(b+(1/2)
!

(Xi−X̃i)
2)

∝ IG(a+
n

2
, b+

1

2

%
(Xi − X̃i)

2).
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(d) (5 points) Describe explicitly a Gibbs sampling algorithm to simulate from the
joint posterior distribution p(β, τ 2, X̃ | X,Y).

Initialize β(0), τ 2
(0)
. Then, for t = 1, . . . , T :

i. Generate X̃(t) from p(X̃ | β(t−1), τ 2
(t−1)

,X,Y)

ii. Generate β(t) from p(β | X̃(t), τ 2
(t−1)

,X,Y)

iii. Generate τ 2
(t)

from p(τ | X̃(t), β(t− 1),X,Y)

Step (2) uses the solution to part b, and step (3) uses the solution to part c.
For step (1), because X̃i ∼ N(Xi, τ

2) and Yi/β ∼ N(X̃i, σ
2/β2), an application

of the normal-normal model gives the conditional posterior X̃i ∼ N(µi,Vari)
where

µi =
(σ2/β2)Xi + τ 2(Yi/β)

(σ2/β2) + τ 2

and

Vari =
(σ2/β2)τ 2

(σ2/β2) + τ 2

for i = 1, . . . , n.

(e) (4 points) Instead of using an IG(a, b) prior for τ 2, describe a reasonable em-
pirical Bayes approach to estimate τ 2. Write your answer in closed form as a
function of the observed data, τ̂ 2 = f(X,Y, σ2).
From part (a), var(Yi) = β2τ 2 + σ2. Substitute β̂ = (XTX)−1XTY and let
s2 be the empirical variance of the residuals s2 = 1

n−1

"n
i=1(Yi −Xiβ̂)

2. Then,

solve s2 = β̂2τ 2 + σ2 to get τ̂ 2 = s2−σ2

β̂2
.

There may be sensible alternative approaches.
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Figure 1

2. Importance Sampling [4 pts]
Figures 1 illustrate importance sampling from a N(0, 1) distribution. The left col-
umn gives four different importance densities (dashed line) that were used to draw
importance samples from the target distribution (black line). The right column
shows histograms of the sample weights generated from each scenario on the left.
Match the weight histogram on the right (A,B,C, or D) that corresponds to each
panel on the left (I, II, III, or IV). I: A, II: C, III: D, IV: B
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3. Genomic testing [8 pts]
Consider genetic data for N1 individuals that are affected by a disease, and N0

unaffected individuals. A single neucleotide polymorphism (SNP) is recorded as
present (Y = 1) or absent (Y = 0) for each individual. Thus, the data are of
the form Yij ∈ {0, 1} for affected/unaffected status j = 0, 1, and individuals i =
1, . . . , Nj. Assume

Yij
indep∼ Bernoulli(θj),

so θ0 is the probability that the SNP is present for an unaffected individual and θ1
is the probability that the SNP is present for an affected individual. Consider two
models, one where disease status has no effect (M0) and one where it does (Ma):

• M0: θ0 = θ1 = θ and θ ∼ Beta(1, 1),

• Ma: θ0 ∼ Beta(1, 1) and θ1 ∼ Beta(1, 1), where θ0 and θ1 are independent.

(a) (2 pts) What are the posterior distributions of θ0 and θ1 under Ma, p(θ0 |
Y,Ma) and p(θ1 | Y,Ma)?

By the beta-binomial model, p(θ0 | Y,Ma) = Beta
!
1 +

"N0

i=1 Yi0, 1 +N0 −
"N0

i=1 Yi0

#

and p(θ1 | Y,Ma) = Beta
!
1 +

"N1

i=1 Yi1, 1 +N1 −
"N1

i=1 Yi1

#
.

(b) (2 pts) What is the posterior distribution of θ0, under M0, p(θ0 | Y,M0)?
By the beta-binomial model and because under M0 θ0 = θ1 = θ,

p(θ0 | Y,M0) = Beta(

&
1 +

N0%

i=1

Yi0 +

N1%

i=1

Yi1, 1 +N0 +N1 −
N0%

i=1

Yi0 −
N1%

i=1

Yi1

'

(c) (4 pts) Assume S0 unaffected individuals have the SNP and S1 affected have
the SNP. What is the Bayes factor for M0 over Ma?
The Bayes factor is p(Y|M0)

p(Y|Ma)
, where

p(Y | M0) =

(
p(Y | θ)p(θ)dθ

=

(
θS0+S1(1− θ)N0+N1−S0−S1dθ

= B(S0 + S1 + 1, N0 +N1 − S0 − S1 + 1)

and

p(Y | Ma) =

(
p(Y | θ0)p(θ0)dθ0

(
p(Y | θ1)p(θ1)dθ1

=

(
θS0
0 (1− θ0)

N0−S0dθ0

(
θS1
1 (1− θ1)

N1−S1dθ1

= B(S0 + 1, N0 + 1)B(S1 + 1, N1 + 1).
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