
Homework 4
PUBH 8442: Bayes Decision Theory and Data Analysis

Include any code used to generate answers at the end of your assignment.

1. Under the normal-normal hierarchical model described in the Hierarchical Models slide
set, show that the posterior distribution for µ is

p(µ | y) = Normal(µ̂, Vµ)

where

µ̂ =

󰁓m
i=1(σ

2
i + τ2)−1ȳi󰁓m

i=1(σ
2
i + τ2)−1)

and Vµ =

󰀥
m󰁛

i=1

(σ2
i + τ2)−1

󰀦−1

.

Under the normal-normal hierarchical model,

ȳi|θi ∼ N(θi,σ
2
i )

θi|µ ∼ N(µ, τ2)

where σ2, τ2 are known and p(µ) = 1.

Note that

ȳi = θi + 󰂃1, 󰂃1 ∼ N(0,σ2
i )

θi = µ+ 󰂃2, 󰂃2 ∼ N(0, τ2)

ȳi = µ+ 󰂃2 + 󰂃1 = µ+ 󰂃∗, 󰂃∗ ∼ N(0,σ2
i + τ2)

where 󰂃1 ⊥ 󰂃2. Thus, ȳi ∼ N(µ,σ2
i + τ2). So, by

p(µ|y) ∝ p(µ) · p(y|µ)

∝ 1 ·
m󰁜

i=1

N(ȳi|µ,σ2
i + τ2)

∝ exp

󰀫
−1

2

m󰁛

i=1

1

σ2
i + τ2

(µ− ȳi)
2

󰀬

∝ N(µ̂, Vµ)

where

µ̂ =

󰁓m
i=1(σ

2
i + τ2)−1ȳi󰁓m

i=1(σ
2
i + τ2)−1

Vµ =

󰀫
m󰁛

i=1

(σ2
i + τ2)−1

󰀬−1

(Alternatively, we could show the result by repeated applications of the normal-normal
model: first condition on y1, then update the normal posterior for µ by conditioning on
y2, etc.)
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2. (a) conditional posterior distribution for each p(βk|y,β0):
Note that

yk = Xkβk + 󰂃1, 󰂃1 ∼ N(0,σ2I)

βk = β0 + 󰂃2 󰂃2 ∼ N(0,σ2τ2k I)

where 󰂃1 ⊥ 󰂃2.

If β0 = 0, this is a direct application of the result in Bayesian Linear Models slide
17. Note that

yk −Xkβ0 = Xk󰂃2 + 󰂃1

so we can apply the result on slide 17 to derive the posterior of 󰂃2 for y
∗
k = yk−Xkβ0:

p(󰂃2|σ2, τ2k ,β0,y) = Normal
󰀓
β̃,σ2Vβ

󰀔

where β̃ = (XT
k Xk + (τ2k I)

−1)−1(XTy∗
k) and Vβ = (XT

k Xk + (τ2k I)
−1)−1. It follows

that
βk ∼ Normal

󰀓
β0 + β̃,σ2Vβ

󰀔
.

(b) conditional posterior distribution for p(β0|y, {βk}Kk=1).

We start with the joint posterior distribution:

p(y,σ2,β0,βk) = N(β0|0,σ2τ20 I)×
K󰁜

k=1

N(βk|β0,σ2τ2k I)×
K󰁜

k=1

N(yk|Xkβk,σ
2I)

We only need to consider terms that contain β0. All terms not including β0 can be
considered constants. This gives us:

p(β0|y, {βk}Kk=1) ∝ N(β0|0,σ2τ20 I)×
K󰁜

k=1

N(βk|β0,σ2τ2k I)

=

p󰁜

i=1

N(β0i|0,σ2τ20 )×
K󰁜

k=1

N(βki|β0i,σ2τ2k ).

= p(β0i|{βk}Kk=1)

So the conditional posterior does not depend on y and the coefficients β0i are in-
dependent. Applying the univariate normal-normal result gives p(β0i|{βk}Kk=1) =
N(Cici, Ci) where

Ci =

󰀣
(σ2τ20 )

−1 +

K󰁛

k=1

(σ2τ2k )
−1

󰀤−1

ci =

󰀣
K󰁛

k=1

βT
ki(σ

2τ2k )
−1

󰀤T

In matrix form, p(β0|y, {βk}Kk=1) ∼ N(Cc,C) where

C =

󰀣
(σ2τ20 I)

−1 +

K󰁛

k=1

(σ2τ2k I)
−1

󰀤−1

c =

󰀣
K󰁛

k=1

βT
k (σ

2τ2k I)
−1

󰀤T
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(c) conditional posterior distribution for a new observation from a new group p(yk+1|y,β0, {βk}Kk=1).
For this problem we consider β0 and Xk to be constants and known. There is only
1 observation in this group. The easiest method to solve this problem relies on the
use of writing out the equations.

yk+1 = Xk+1βk+1 + 󰂃1 󰂃1 ∼ N(0,σ2)

βk+1 = β0 + 󰂃2 󰂃2 ∼ N(0,σ2τ2k I)

again where 󰂃1 ⊥ 󰂃2. This fact is important because it tells us that we do not need
to consider covariance terms when we plug βk+1 into the equation for yk+1. Then,
we arrive at

yk+1 = Xk+1(β0 + 󰂃2) + 󰂃1

Now, we simply take the expected value and variance with respect to yk+1 for
the quantity of the right hand side. Specifically, we find p(yk+1|y,β0, {βk}Kk=1) ∼
N(µy,Σy) where

µy = Xk+1β0

Σy = Xk+1(σ
2τ2k+1I)X

T
k+1 + σ2
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