Homework 4

PUBH 8442: Bayes Decision Theory and Data Analysis

Include any code used to generate answers at the end of your assignment.

1. Under the normal-normal hierarchical model described in the Hierarchical Models slide set, show that the posterior distribution for μ is

$$
p(\mu \mid \mathbf{y})=\operatorname{Normal}\left(\hat{\mu}, V_{\mu}\right)
$$

where

$$
\hat{\mu}=\frac{\sum_{i=1}^{m}\left(\sigma_{i}^{2}+\tau^{2}\right)^{-1} \bar{y}_{i}}{\left.\sum_{i=1}^{m}\left(\sigma_{i}^{2}+\tau^{2}\right)^{-1}\right)} \text { and } V_{\mu}=\left[\sum_{i=1}^{m}\left(\sigma_{i}^{2}+\tau^{2}\right)^{-1}\right]^{-1}
$$

Under the normal-normal hierarchical model,

$$
\begin{aligned}
\bar{y}_{i} \mid \theta_{i} & \sim N\left(\theta_{i}, \sigma_{i}^{2}\right) \\
\theta_{i} \mid \mu & \sim N\left(\mu, \tau^{2}\right)
\end{aligned}
$$

where σ^{2}, τ^{2} are known and $p(\mu)=1$.
Note that

$$
\begin{aligned}
& \bar{y}_{i}=\theta_{i}+\epsilon_{1}, \quad \epsilon_{1} \sim N\left(0, \sigma_{i}^{2}\right) \\
& \theta_{i}=\mu+\epsilon_{2}, \quad \epsilon_{2} \sim N\left(0, \tau^{2}\right) \\
& \bar{y}_{i}=\mu+\epsilon_{2}+\epsilon_{1}=\mu+\epsilon^{*}, \quad \epsilon^{*} \sim N\left(0, \sigma_{i}^{2}+\tau^{2}\right)
\end{aligned}
$$

where $\epsilon_{1} \perp \epsilon_{2}$. Thus, $\bar{y}_{i} \sim N\left(\mu, \sigma_{i}^{2}+\tau^{2}\right)$. So, by

$$
\begin{aligned}
p(\mu \mid \mathbf{y}) & \propto p(\mu) \cdot p(\mathbf{y} \mid \mu) \\
& \propto 1 \cdot \prod_{i=1}^{m} N\left(\bar{y}_{i} \mid \mu, \sigma_{i}^{2}+\tau^{2}\right) \\
& \propto \exp \left\{-\frac{1}{2} \sum_{i=1}^{m} \frac{1}{\sigma_{i}^{2}+\tau^{2}}\left(\mu-\bar{y}_{i}\right)^{2}\right\} \\
& \propto N\left(\hat{\mu}, V_{\mu}\right)
\end{aligned}
$$

where

$$
\begin{aligned}
\hat{\mu} & =\frac{\sum_{i=1}^{m}\left(\sigma_{i}^{2}+\tau^{2}\right)^{-1} \bar{y}_{i}}{\sum_{i=1}^{m}\left(\sigma_{i}^{2}+\tau^{2}\right)^{-1}} \\
V_{\mu} & =\left\{\sum_{i=1}^{m}\left(\sigma_{i}^{2}+\tau^{2}\right)^{-1}\right\}^{-1}
\end{aligned}
$$

(Alternatively, we could show the result by repeated applications of the normal-normal model: first condition on \mathbf{y}_{1}, then update the normal posterior for μ by conditioning on \mathbf{y}_{2}, etc.)
2. (a) conditional posterior distribution for each $p\left(\beta_{k} \mid \mathbf{y}, \beta_{0}\right)$:

Note that

$$
\begin{array}{rr}
\mathbf{y}_{k}=X_{k} \beta_{k}+\epsilon_{1}, & \epsilon_{1} \\
\sim N\left(0, \sigma^{2} \mathbf{I}\right) \\
\beta_{k}=\beta_{0}+\epsilon_{2} & \epsilon_{2}
\end{array} \sim N\left(0, \sigma^{2} \tau_{k}^{2} \mathbf{I}\right)
$$

where $\epsilon_{1} \perp \epsilon_{2}$.
If $\beta_{0}=0$, this is a direct application of the result in Bayesian Linear Models slide 17. Note that

$$
\mathbf{y}_{k}-X_{k} \beta_{0}=X_{k} \epsilon_{2}+\epsilon_{1}
$$

so we can apply the result on slide 17 to derive the posterior of ϵ_{2} for $\mathbf{y}_{k}^{*}=\mathbf{y}_{k}-X_{k} \beta_{0}$:

$$
p\left(\epsilon_{2} \mid \sigma^{2}, \tau_{k}^{2}, \beta_{0}, \mathbf{y}\right)=\operatorname{Normal}\left(\tilde{\beta}, \sigma^{2} V_{\beta}\right)
$$

where $\tilde{\beta}=\left(X_{k}^{T} X_{k}+\left(\tau_{k}^{2} \mathbf{I}\right)^{-1}\right)^{-1}\left(X^{T} \mathbf{y}_{k}^{*}\right)$ and $V_{\beta}=\left(X_{k}^{T} X_{k}+\left(\tau_{k}^{2} \mathbf{I}\right)^{-1}\right)^{-1}$. It follows that

$$
\beta_{k} \sim \operatorname{Normal}\left(\beta_{0}+\tilde{\beta}, \sigma^{2} V_{\beta}\right)
$$

(b) conditional posterior distribution for $p\left(\beta_{0} \mid \mathbf{y},\left\{\beta_{k}\right\}_{k=1}^{K}\right)$.

We start with the joint posterior distribution:

$$
p\left(\mathbf{y}, \sigma^{2}, \beta_{0}, \beta_{k}\right)=N\left(\beta_{0} \mid \mathbf{0}, \sigma^{2} \tau_{0}^{2} \mathbf{I}\right) \times \prod_{k=1}^{K} N\left(\beta_{k} \mid \beta_{0}, \sigma^{2} \tau_{k}^{2} \mathbf{I}\right) \times \prod_{k=1}^{K} N\left(\mathbf{y}_{k} \mid X_{k} \beta_{k}, \sigma^{2} \mathbf{I}\right)
$$

We only need to consider terms that contain β_{0}. All terms not including β_{0} can be considered constants. This gives us:

$$
\begin{aligned}
p\left(\beta_{0} \mid \mathbf{y},\left\{\beta_{k}\right\}_{k=1}^{K}\right) & \propto N\left(\beta_{0} \mid \mathbf{0}, \sigma^{2} \tau_{0}^{2} \mathbf{I}\right) \times \prod_{k=1}^{K} N\left(\beta_{k} \mid \beta_{0}, \sigma^{2} \tau_{k}^{2} \mathbf{I}\right) \\
& =\prod_{i=1}^{p} N\left(\beta_{0 i} \mid \mathbf{0}, \sigma^{2} \tau_{0}^{2}\right) \times \prod_{k=1}^{K} N\left(\beta_{k i} \mid \beta_{0 i}, \sigma^{2} \tau_{k}^{2}\right) \\
& =p\left(\beta_{0 i} \mid\left\{\beta_{k}\right\}_{k=1}^{K}\right)
\end{aligned}
$$

So the conditional posterior does not depend on \mathbf{y} and the coefficients $\beta_{0 i}$ are independent. Applying the univariate normal-normal result gives $p\left(\beta_{0 i} \mid\left\{\beta_{k}\right\}_{k=1}^{K}\right)=$ $N\left(C_{i} c_{i}, C_{i}\right)$ where

$$
\begin{gathered}
C_{i}=\left(\left(\sigma^{2} \tau_{0}^{2}\right)^{-1}+\sum_{k=1}^{K}\left(\sigma^{2} \tau_{k}^{2}\right)^{-1}\right)^{-1} \\
c_{i}=\left(\sum_{k=1}^{K} \beta_{k i}^{T}\left(\sigma^{2} \tau_{k}^{2}\right)^{-1}\right)^{T}
\end{gathered}
$$

In matrix form, $p\left(\beta_{0} \mid \mathbf{y},\left\{\beta_{k}\right\}_{k=1}^{K}\right) \sim N(C c, C)$ where

$$
\begin{gathered}
C=\left(\left(\sigma^{2} \tau_{0}^{2} \mathbf{I}\right)^{-1}+\sum_{k=1}^{K}\left(\sigma^{2} \tau_{k}^{2} \mathbf{I}\right)^{-1}\right)^{-1} \\
c=\left(\sum_{k=1}^{K} \beta_{k}^{T}\left(\sigma^{2} \tau_{k}^{2} \mathbf{I}\right)^{-1}\right)^{T}
\end{gathered}
$$

(c) conditional posterior distribution for a new observation from a new group $p\left(y_{k+1} \mid \mathbf{y}, \beta_{0},\left\{\beta_{k}\right\}_{k=1}^{K}\right)$. For this problem we consider β_{0} and X_{k} to be constants and known. There is only 1 observation in this group. The easiest method to solve this problem relies on the use of writing out the equations.

$$
\begin{array}{rr}
y_{k+1}=X_{k+1} \beta_{k+1}+\epsilon_{1} & \epsilon_{1} \sim N\left(0, \sigma^{2}\right) \\
\beta_{k+1}=\beta_{0}+\epsilon_{2} & \epsilon_{2} \sim N\left(0, \sigma^{2} \tau_{k}^{2} \mathbf{I}\right)
\end{array}
$$

again where $\epsilon_{1} \perp \epsilon_{2}$. This fact is important because it tells us that we do not need to consider covariance terms when we plug β_{k+1} into the equation for y_{k+1}. Then, we arrive at

$$
y_{k+1}=X_{k+1}\left(\beta_{0}+\epsilon_{2}\right)+\epsilon_{1}
$$

Now, we simply take the expected value and variance with respect to y_{k+1} for the quantity of the right hand side. Specifically, we find $p\left(y_{k+1} \mid \mathbf{y}, \beta_{0},\left\{\beta_{k}\right\}_{k=1}^{K}\right) \sim$ $N\left(\mu_{y}, \Sigma_{y}\right)$ where

$$
\begin{gathered}
\mu_{y}=X_{k+1} \beta_{0} \\
\Sigma_{y}=X_{k+1}\left(\sigma^{2} \tau_{k+1}^{2} \mathbf{I}\right) X_{k+1}^{T}+\sigma^{2}
\end{gathered}
$$

