Homework 5

Due Wednesday, 4/3
PUBH 8442: Bayes Decision Theory and Data Analysis

Include any code used to generate answers at the end of your assignment, and submit electronically via Canvas.

1. Pump failure

Table 1 gives data (from Gaver \& O'Muircheartaigh, 1987) on the number of pump failures Y_{i} observed in t_{i} thousands of hours for 10 nuclear power systems $i=1, \ldots, 10$. A natural model for these data is $Y_{i} \stackrel{i i d}{\sim} \operatorname{Poisson}\left(\theta_{i} t_{i}\right), \theta_{i} \stackrel{i i d}{\sim} \operatorname{Gamma}(a, b)$. Here θ_{i} represents the failure rate per thousand hours for the $i^{\text {th }}$ system, and a, b are shared hyperparameters. [Credit: this is based on exercises 5.9 and 5.10 in Carlin \mathcal{B} Louis. However, solve it using the parameterization of the Gamma distribution that we use in class, not that used in the Carlin \& Louis book.]
(a) Find the marginal distribution of $\mathbf{Y}=\left(Y_{1}, \ldots, Y_{10}\right)^{T}, P(\mathbf{Y} \mid a, b)$.
(b) Use the method of moments to obtain closed form expressions for hyperparameter estimates \hat{a} and \hat{b}. (Define the rates $r_{i}=Y_{i} / t_{i}$, and equate their first two moments \bar{r} and s_{r}^{2} to the corresponding theoretical moments in terms of a and b).
(c) Calculate \hat{a} and \hat{b} for the pump failure data.
(d) Based on \hat{a} and \hat{b}, compute point estimates for the failure rate of each pump.

i	Y_{i}	t_{i}	r_{i}
1	5	94.320	0.053
2	1	15.720	0.064
3	5	62.880	0.080
4	14	125.760	0.111
5	3	5.240	0.573
6	19	31.440	0.604
7	1	1.048	0.954
8	1	1.048	0.954
9	4	2.096	1.910
10	22	10.480	2.099

Table 1: Pump failure data
2. Stratified sampling

Stratified random sampling is a popular survey sampling scheme where the population of N units is first divided into J non-overlapping subpopulations, or strata, of $N_{1}, N_{2}, \ldots, N_{J}$ units so that $\sum_{j=1}^{J} N_{j}=N$. Once the strata have been determined, a simple random sample (here we assume without replacement) is drawn from within each stratum, the drawings being made independently across strata. The sample sizes within each strata are given by n_{1}, \ldots, n_{J} and the total sample size is $n=\sum_{j=1}^{J} n_{j}$.
Let $Y_{i j}$ denote unit i of the population in stratum j and let $\mathbf{I}=\left\{I_{i j}\right\}$ be the collection of inclusion indicators, where $I_{i j}=1$ if the i-th population unit in stratum j is included

Stratum 1	Stratum 2		
324	180	130	101
797	314	172	121
507	238	153	116
748	296	163	119
457	235	138	113
381	192	132	104

Table 2: Inhabitants, in thousands, from a stratified random sample of 24 US cities.
in the sample, and $I_{i j}=0$ otherwise. We also denote by $\mathbf{Y}_{I}=\left\{y_{i j}\right\}$ the collection of sampled units, where $y_{i j}$ represents unit i of the random sample from stratum j. Finally, let $D=\left(\mathbf{Y}_{I}, \mathbf{I}\right)$ be the observed data conditional upon which all posterior distributions will be evaluated.
Define $\overline{y_{j}}=\frac{1}{n_{j}} \sum_{i=1}^{n_{j}} y_{i j}$ and $\bar{Y}=\frac{1}{N} \sum_{j=1}^{J} \sum_{i=1}^{N_{j}} Y_{i j}$, and assume

$$
Y_{i j} \mid \mu_{j}, \sigma_{j}^{2} \stackrel{i i d}{\sim} N\left(\mu_{j}, \sigma_{j}^{2}\right), j=1, \ldots, J
$$

with a flat (uniform) prior on each μ_{j}. Then,

$$
\mu_{j} \mid D, \sigma_{j}^{2} \stackrel{i n d e p}{\sim} N\left(\bar{y}_{j}, \frac{\sigma_{j}^{2}}{n_{j}}\right)
$$

and

$$
P\left(\bar{Y}_{j} \mid D, \sigma_{j}^{2}\right)=N\left(\overline{y_{j}}, \frac{\sigma_{j}^{2}}{n_{j}}-\frac{\sigma_{j}^{2}}{N_{j}}\right)
$$

(a) Now assume that the σ_{j}^{2} 's are all unknown and consider the non-informative prior $P\left(\mu_{j}, \sigma_{j}^{2}\right) \propto 1 / \sigma_{j}^{2}$ for each j. Describe clearly an exact (i.e., direct) posterior sampling algorithm that will yield samples from the posterior distribution of the population stratum means \bar{Y}_{j}.
(b) Explain how the posterior samples of \bar{Y}_{j} for $j=1, \ldots, J$ from part (a) can be used to obtain exact posterior samples of \bar{Y}.
(c) Table 1 presents data from one of the first stratified sampling exercises in the United States, from 1920 to estimate the number of inhabitants in the $N=64$ largest cities at the time. These 64 cities were divided into $J=2$ strata, where the first strata comprised $N_{1}=16$ of the largest cities and the second strata comprised the remaining $N_{2}=48$ cities. Within the first stratum $n_{1}=6$ cities were chosen, while $n_{2}=18$ cities were chosen from stratum 2.
Using the data in Table 1, use R to compute the posterior mean and 95% credible intervals for the total (not average) number of inhabitants in the 64 cities. Also present posterior estimates (mean, median and 95% credible intervals) for the total number of inhabitants in each stratum.

