Midterm [20 pts]

March 16th, 2022 in class

PUBH 8442: Bayes Decision Theory and Data Analysis
Give your final answers in simplified, closed form wherever possible. However, partial credit will be awarded for incomplete solutions. Good luck!

1. Regression hypotheses [9 pts]

Consider the simple linear regression model $\mathbf{y}=\mathbf{x} \beta+\epsilon$, where $\mathbf{y}: n \times 1, \mathbf{x}: n \times 1$ and $\epsilon: n \times 1$ with $\epsilon \sim N\left(\mathbf{0}, \sigma^{2} I\right)$. Assume the residual variance σ^{2} is fixed, and there are two models for β :

- M_{0} is the null model: $\beta=0$.
- M_{1} is a model with a normal prior: $\beta \sim N\left(0, \sigma^{2} \tau^{2}\right)$ with τ^{2} fixed.

Assume each model has prior probability $1 / 2, P\left(M_{0}\right)=P\left(M_{1}\right)=1 / 2$.
(a) (3 points) What is the marginal distribution for \mathbf{y} under $M_{1}, p\left(\mathbf{y} \mid M_{1}\right)$?

Under $M_{1} \mathbf{y}$ is multivariate normal, with mean

$$
E(\mathbf{y})=\mathbf{x} E(\beta)+E(\epsilon)=0+0=0
$$

and variance matrix

$$
\operatorname{Var}(\mathbf{y})=\mathbf{x} \operatorname{Var}(\beta) \mathbf{x}^{T}+\operatorname{Var}(\epsilon)=\sigma^{2} \tau^{2} \mathbf{x} \mathbf{x}^{T}+\sigma^{2} \mathbf{I}
$$

. That is, $p\left(\mathbf{y} \mid M_{1}\right)=N\left(\mathbf{0}, \sigma^{2}\left(\tau^{2} \mathbf{x x}^{T}+\mathbf{I}\right)\right)$.
(b) (3 points) What is the posterior probability of $M_{1}, p\left(M_{1} \mid \mathbf{y}\right)$?

Using the given prior probabilities $P\left(M_{0}\right)=P\left(M_{1}\right)=1 / 2$,

$$
p\left(M_{1} \mid \mathbf{y}\right)=\frac{P\left(M_{1}\right) p\left(\mathbf{y} \mid M_{1}\right)}{P\left(M_{0}\right) p\left(\mathbf{y} \mid M_{0}\right)+P\left(M_{1}\right) P\left(\mathbf{y} \mid M_{1}\right)}=\frac{p\left(\mathbf{y} \mid M_{1}\right)}{p\left(\mathbf{y} \mid M_{0}\right)+p\left(\mathbf{y} \mid M_{1}\right)}
$$

where $p\left(\mathbf{y} \mid M_{1}\right)$ is given in part (a) and $p\left(\mathbf{y} \mid M_{1}\right)=N\left(\mathbf{0}, \sigma^{2} I\right)$.
(c) (3 points) What is the posterior expectation of β, marginalizing over M_{0} and $M_{1}, E(\beta \mid \mathbf{y})$?

Note that

$$
p(\beta \mid \mathbf{y})=P\left(M_{0} \mid \mathbf{y}\right) p\left(\beta \mid M_{0}, \mathbf{y}\right)+P\left(M_{1} \mid \mathbf{y}\right) p\left(\beta \mid M_{1}, \mathbf{y}\right)
$$

which gives

$$
\begin{aligned}
E(\beta \mid \mathbf{y}) & =P\left(M_{0} \mid \mathbf{y}\right) E\left(\beta \mid M_{0}, \mathbf{y}\right)+P\left(M_{1} \mid \mathbf{y}\right) E\left(\beta \mid M_{1}, \mathbf{y}\right) \\
& =P\left(M_{1} \mid \mathbf{y}\right) E\left(\beta \mid M_{1}, \mathbf{y}\right),
\end{aligned}
$$

where $P\left(M_{1} \mid \mathbf{y}\right)$ is found in part (b), and $E\left(\beta \mid M_{1}, \mathbf{y}\right)=\left(\mathbf{x}^{T} \mathbf{x}+\left(\tau^{2}\right)^{-1}\right)^{-1} \mathbf{x}^{T} \mathbf{y}$ (see slide 17 of Bayesian Linear Models notes).
2. Telemedicine call-ins [7 pts]

Let Y be the number of call-ins to a new telemedicine service within the first hour, which has a Poisson distribution with rate parameter $\lambda: Y \sim \operatorname{Poisson}(\lambda)$. Assume λ has a $\operatorname{Gamma}(1,1)$ prior distribution.
(a) (3 pts) What is the marginal probability that $Y=0, P(Y=0)$?

By the Poisson-Gamma marginal distribution (see lecture notes for "Model Comparison") with $y=0$ and $\alpha=\beta=1$:

$$
P(Y=0)=\frac{1^{1} \Gamma(0+1)}{\Gamma(1) \cdot 1 \cdot(1+1)^{0+1}}=\frac{1}{2} .
$$

(b) (4 pts) Consider the wait time (in hrs) until the next call-in after the first hour, X, where $X \sim \operatorname{Exponential}(\lambda)$. What is the conditional density of X, given $Y, p(X \mid Y)$? (Assume X and Y are independent given λ.)

By the Poisson-Gamma model, $p(\lambda \mid Y) \sim \operatorname{Gamma}(Y+1,2)$. So,

$$
\begin{aligned}
p(X \mid Y) & =\int_{0}^{\infty} p(X \mid \lambda) p(\lambda \mid Y) d \lambda \\
& =\int \lambda e^{-\lambda X} \frac{2^{(Y+1)}}{\Gamma(Y+1)} \lambda^{Y} e^{-2 \lambda} d \lambda \\
& =\frac{2^{(Y+1)}}{\Gamma(1+Y)} \int \lambda^{(Y+1)} e^{-(X+2) \lambda} \\
& =\frac{2^{(Y+1)}}{\Gamma(1+Y)} \frac{\Gamma(Y+2)}{(X+2)^{(Y+2)}} \\
& =\frac{(Y+1) 2^{(Y+1)}}{(X+2)^{(Y+2)}}
\end{aligned}
$$

for $X \geq 0$.
3. Bayes estimator [4 pts]

Consider a Bayesian model with likelihood $p(\mathbf{y} \mid \theta)$ and prior $p(\theta)$ defined for $\theta>0$.
We would like to estimate θ using the loss function

$$
l(\theta, d(\mathbf{y}))=\frac{(\theta-d(\mathbf{y}))^{2}}{d(\mathbf{y})} \quad \text { for } d(\mathbf{y})>0
$$

What is the Bayes decision rule, $d(\mathbf{y})=\hat{\theta}_{\mathbf{y}}$, under this loss function? Write your answer in terms of the posterior mean $\mathrm{E}(\theta \mid \mathbf{y})$ and variance $\mathrm{V}(\theta \mid \mathbf{y})$.

Write $E=E_{\theta \mid \mathbf{y}}, V=\operatorname{Var}_{\theta \mid \mathbf{y}}$, and $d=d(\mathbf{y})$ for short. The posterior risk is

$$
\begin{aligned}
E \frac{(\theta-d)^{2}}{d} & =E\left(\frac{\theta^{2}-2 \theta d+d^{2}}{d}\right) \\
& =\frac{1}{d} E\left(\theta^{2}\right)-2 E(\theta)+d .
\end{aligned}
$$

Which is minimized where the derivative is 0 :

$$
\begin{aligned}
\frac{d}{d d} E \frac{(\theta-d)^{2}}{d} & =\frac{-E\left(\theta^{2}\right)}{d^{2}}+1=0 \\
& \rightarrow d=\sqrt{E\left(\theta^{2}\right)}=\sqrt{V(\theta)+E(\theta)^{2}}
\end{aligned}
$$

Reference: Density and probability mass functions

$$
\begin{array}{ll}
\operatorname{Normal}(\boldsymbol{\mu}, \boldsymbol{\Sigma}): p(\mathbf{x})=\frac{e^{-\frac{1}{2}(\mathbf{x}-\mu)^{T} \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\mu)}}{\operatorname{det}(2 \pi \Sigma)^{1 / 2}} & \operatorname{Exponential}(\lambda): p(x)=\lambda e^{-\lambda x} \\
\operatorname{Gamma}(\alpha, \beta): p(x)=\frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\beta x} & \operatorname{Poisson}(\lambda): P(x)=\frac{\lambda^{x} e^{-\lambda}}{x!}
\end{array}
$$

