## Midterm [20 pts]

March 18th, 2024 in class
PUBH 8442: Bayes Decision Theory and Data Analysis

Give your final answers in simplified, closed form wherever possible. However, partial credit will be awarded for incomplete solutions. Good luck!

1. In-vitro fertilization [11 pts]

Let $\theta$ be the unknown success rate of a novel in vitro fertilization method. Let $X$ be the number of failed attempts before the first success. Then $X$ has a geometric distribution with probability $\theta$ :

$$
P(X=k \mid \theta)=(1-\theta)^{k} \theta
$$

for $k=0,1,2,3, \ldots$.
(a) (3 points) Show that the Jeffreys prior for $\theta$ is

$$
p(\theta) \propto \theta^{-1}(1-\theta)^{-\frac{1}{2}}
$$

for $\theta \in(0,1)$.

The log-likelihood is

$$
L=\log P(X \mid \theta)=X \log (1-\theta)+\log \theta .
$$

## Differentiating twice gives

$$
\frac{d^{2} L}{d \theta^{2}}=-\frac{1}{\theta^{2}}-\frac{X}{(1-\theta)^{2}} .
$$

The Fisher information $I(\theta)$ is the negative expectation of the log-likelihood. Using $E(X \mid \theta)=(1-\theta) \theta^{-1}$,

$$
I(\theta)=\frac{1}{\theta^{2}}+\frac{1-\theta}{\theta(1-\theta)^{2}}=\theta^{-2}(1-\theta)^{-1} .
$$

The Jeffreys prior is the square root of $I(\theta)$ :

$$
p(\theta) \propto \sqrt{I(\theta)}=\theta^{-1}(1-\theta)^{-\frac{1}{2}} .
$$

For parts (b-e), use the Jeffreys prior given in part (a).
(b) (1 points) Is the prior proper?

No, the prior is improper because its integral is not finite on $[0,1]$.
(c) (2 points) For which values of $X$, if any, will the posterior be proper?

The posterior is

$$
p(\theta \mid X) \propto(1-\theta)^{X-1 / 2}
$$

Thus the posterior is a proper Beta\{1, $X+1 / 2\}$ distribution for all possible $X$.
(d) (2 points) What is the Bayes estimator for $\theta$, given $X$, under squared error loss?

The Bayes estimator under squared error loss is the conditional expectation. Using $\theta \mid X \sim \operatorname{Beta}\{1, X+1 / 2\}$, the Bayes estimator is

$$
E(\theta \mid X)=\frac{1}{1+X+1 / 2}=\frac{2}{2 X+3} .
$$

(e) (3 points) Let $X_{2}$ and $X_{3}$ be distributed identically to $X$, and assume $X, X_{2}$, and $X_{3}$ are independent given $\theta$. If $X=1$, what is $P\left(X_{2}+X_{3}=0 \mid X=1\right)$, the probability that there are no failed attempts in the next two trials?

The posterior after observing $X=1$ is $p(\theta \mid X=1)=\operatorname{Beta}(1,3 / 2)$, and after observing $X=1, X_{2}=0$ is $\operatorname{Beta}(2,3 / 2)$ distributed. Thus,

$$
\begin{aligned}
P\left(X_{2}+X_{3}=0 \mid X=1\right) & =P\left(X_{2}=0 \mid X=1\right) P\left(X_{3}=0 \mid X_{2}=0, X=1\right) \\
& =\frac{1}{B(1,3 / 2)} \int_{0}^{1} \theta \cdot(1-\theta)^{1 / 2} d \theta \times \frac{1}{B(2,3 / 2)} \int_{0}^{1} \theta \cdot \theta(1-\theta)^{1 / 2} d \theta \\
& =\frac{B(3,3 / 2)}{B(1,3 / 2)} \\
& =8 / 35,
\end{aligned}
$$

where $B(\cdot, \cdot)$ denotes the Beta function.
2. Bayesian $P$-Value $[3 \mathrm{pts}]$

Consider $y_{1}, \ldots, y_{n} \stackrel{i i d}{\sim} N\left(\theta, \sigma^{2}\right)$, with $\sigma^{2}$ known and a flat prior on $\theta: p(\theta)=1 \forall \theta$. Let $\mathbf{y}=\left(y_{1}, \ldots, y_{n}\right)$, and let $T(\cdot)$ give the sample mean: $T(\mathbf{y})=\bar{y}$. What is the posterior predictive p-value,

$$
P(T(\mathbf{Y}) \geq T(\mathbf{y}) \mid \mathbf{y}) ?
$$

The posterior distribution of $\theta$ given $\mathbf{y}$ is

$$
\theta \mid \mathbf{y} \sim N\left(\bar{y}, \sigma^{2} / n\right)
$$

(see slide 9 of the "More on Interval Estimation" notes on 2/18). So, because $\bar{Y} \sim N\left(\theta, \sigma^{2} / n\right)$, it follows from the marginal distribution of the normal-normal model that

$$
\bar{Y} \mid \mathbf{y} \sim N\left(\bar{y}, 2 \sigma^{2} / n\right)
$$

Thus, $P(\bar{Y} \geq \bar{y} \mid \mathbf{y})=\frac{1}{2}$.

## Scenario 1



Scenario 2

3. Decision rules [6 pts]

The above figure shows the frequentist risk of two decision rules ( $A$ and $B$ ) as a function of an unknown parameter $\theta$, under two different scenarios. For each scenario, $A$ and $B$ are the only two potential decisions (action space $=\{\mathrm{A}, \mathrm{B}\}$ ), $\theta$ can take any value between 0 and 1 , and $\theta$ has a prior that is positive over the unit interval $p(\theta)>0 \forall \theta \in[0,1]$.
For each of the following, answer "yes", "no", or "not enough informations":
(a) Is $A$ admissible in Scenario 1? No
(b) Is $A$ minimax in Scenario 1? Yes
(c) Is $A$ a Bayes rule in Scenario 1? No
(d) Is $B$ admissible in Scenario 1? Yes
(e) Is $B$ minimax in Scenario 1? Yes
(f) Is $B$ a Bayes rule in Scenario 1? Yes
(g) Is $A$ admissible in Scenario 2? Yes
(h) Is $A$ minimax in Scenario 2? No
(i) Is $A$ a Bayes rule in Scenario 2? Not enough information
(j) Is $B$ admissible in Scenario 2? Yes
(k) Is $B$ minimax in Scenario 2? Yes
(l) Is $B$ a Bayes rule in Scenario 2? Not enough information

