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Comment
E. F. LOCK, A. B. NOBEL, and J. S. MARRON

The article by Crainiceanu et al. addresses an important and
relatively undeveloped area of statistical research: the analysis
of populations in which the data objects are matrices. In particu-
lar, they focus on collections of matrices that have the same row
and column dimensions. Such datasets are increasingly preva-
lent in a number of scientific fields. Examples range from the
analysis of facial data in image analysis, EEG data in neuro-
science, fMRI data in medical imaging, and browsing data in
the study of Internet traffic (see Table 1).

The method proposed by the authors, population value de-
composition (PVD), is a useful way to simultaneously re-
duce the dimensionality of a collection of matrices. For ma-
trices Y1,Y2, . . . ,Yn, each of dimension F × T , the PVD
yields an approximation Yi ≈ PViD for i = 1, . . . ,n. The low-
dimensional representation Vi for each matrix is on a common
set of coordinates determined by P and D. This allows for the
application of standard statistical approaches, such as regres-
sion and cluster analysis, to the lower-dimensional matrices Vi,
rather than the Yi’s. Furthermore, inspection of the population-
wide left and right loading matrices P and D can aid in iden-
tifying the primary modes of variation among a population of
matrices.

The authors present an interesting data analysis; however, we
note that a model formally equivalent to PVD has been pro-
posed in the computer science literature under the name two-
dimensional singular value decomposition (2DSVD) (Ding and
Ye 2005; Ye 2005). This literature also provides natural addi-
tional approaches for choosing the population-wide matrices P
and D. We discuss these approaches in Section 1.

We may regard the problem addressed in these articles by
viewing the data as a three-way (F × n × T) array. In Section 2
we discuss and compare alternative approaches that treat the
data structure as a three-way array. We show that two SVD-
like decompositions for higher-order arrays, those of Cande-
comp/Parafac (Carroll and Chang 1970) and Tucker (Tucker
1966), are related to the PVD decomposition. In fact, both can
be represented in the form PViD, in which the Vi matrices have
a particular structure.

In Section 3 we discuss some important issues and caveats
related to the application of PVD and related methods. In Sec-
tion 4 we compare PVD and other methods in an application to
facial image data.

1. CHOICE OF P AND D

The PVD article suggests determining the entries of the in-
dividual matrices Vi via standard least squares regression, for
a given choice of the population-wide matrices P and D. How-
ever, the default method for choosing P and D is somewhat ad
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hoc, and a more principled approach would be desirable. We
suggest formulating the estimation of P, D, and the Vi matri-
ces together as a single least squares problem. That is, for given
dimensions A < F and B < T , find P : F × A, D : B × T , and
Vi : A × B, i = 1, . . . ,n, to minimize the sum of squared residu-
als

n∑
i=1

‖Yi − PViD‖2
F. (1)

Here ‖ · ‖F defines the Frobenious norm; that is, ‖A‖2
F is just

the sum of the squared entries of A.
This approach to estimating the PVD model was previously

explored by Ye (2005). Ye suggested an iterative least squares
procedure that cycles among estimation of the matrices P,
V1, . . . ,Vn, and D until convergence. Although this iterative
procedure is not guaranteed to achieve the global minimum in
criterion (1), Ye argued that the algorithm is insensitive to start-
ing conditions and is generally successful at minimizing the
sum of squared residuals.

An alternative approach for choosing P and D, termed
2DSVD by Ding and Ye (2005), makes use of the aggregated
row–row and column–column covariance matrices. In particu-
lar, P is determined by the first A singular vectors of the row-
by-row covariance matrix 1

n

∑n
i=1 YiY′

i and D determined by
the first B singular vectors of the column-by-column covari-
ance matrix 1

n

∑n
i=1 Y′

iYi. Equivalently, P can be computed
as the first A left singular vectors of the aggregated matrix
[Y1 Y2 · · · Yn], and D can be computed as the first B right
singular vectors of [Y′

1 Y′
2 · · · Y′

n]′. Although both compu-
tations give the same result, the latter may be more efficient if
one of the dimensions is particularly large, and computing the
covariance is impractical.

The justification for the 2DSVD algorithm is that the columns
of P are chosen as the set of left-singular vectors that explain
the most total variation across the columns of Y1, . . . ,Yn, and
the rows of D are (independently) chosen as the set of right
singular vectors that explain the most variation across the rows
of Y1, . . . ,Yn. Because interactions between P and D are not
accounted for, the resulting matrices do not necessarily min-
imize criterion (1), but they should come close to doing so.
Indeed, 2DSVD could be used to determine the initial matrices
P0 and D0 for an iterative least squares procedure, such as that
described earlier.

The “default” method for estimating P and D proposed in the
PVD article is essentially a two-stage SVD. The first few sin-
gular vectors of each matrix are found separately, then another
SVD of the combined singular vectors determines the global
left and right singular vectors P and D. This method requires
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Table 1. Data examples where the objects are matrices of the same dimension

Objects Value Dimensions

Facial images pixel intensity horizontal × vertical
EEG recordings electrical activity frequency × time
fMRI scans blood flow voxel position × time
Browsing histories visits from website i to website j websites × websites

specifiying the number of singular vectors to take for each ma-
trix, which may be somewhat arbitrary. We feel that the 2DSVD
and least squares methods described earlier are more justified,
and in most cases will be computationally simpler. However, in
some datasets the aggregated matrix [Y1 · · · Yk] and/or one of
Y′Y, YY′ are too large to store in memory. In these cases, the
individual-level data compression used by the two-stage SVD
may be necessary.

Although we have presented various alternative methods for
selecting P and D, we share the authors’ opinion that the ideal
choice of P and D may depend on the particular type of data,
and there is no perfect method.

2. THREE–WAY METHODS

The authors apply PVD to data in which an EEG-based ac-
tivity matrix of Frequency × Time is available for multiple sub-
jects. Note that these data can be framed as a three-way ar-
ray: Frequency × Subject × Time. Indeed, any dataset analyzed
with PVD can be considered a three-way array of dimension
F × n × T . In PVD, the second mode (subject, of dimension n)
is treated differently than the other two modes. In this section
we consider some other SVD-like decompositions for multi-
way arrays that treat all three modes similarly. These meth-
ods are also appropriate for multiway arrays with more than
three modes. Thus they have potential for the analysis of fMRI
data that is truly multidimensional: Length × Width × Height ×
Time × Subject.

There are two standard SVD-like extensions to multiway
data: the Candecomp/Parafac and Tucker decompositions. Both
have been studied in the analysis of tensors for several years, but
are not widely known. The survey by Kolda and Bader (2009)
is a well-written and accessible introduction to tensor notation,
the aformentioned decompositions, and related software. We
briefly discuss their relationship to PVD here, but refrain from
using notation that may be unfamiliar.

2.1 The Candecomp/Parafac Decomposition

The Candecomp/Parafac (Carroll and Chang 1970) decom-
position extends the notion of the SVD as a sum of rank-1 ap-
proximations. We can approximate an F × T matrix Y by com-
bining the first r left singular vectors and corresponding right
singular vectors; that is, the columns of U(1) : F × r are the first
r left singular vectors of Y, and the columns of U(2) : T × r are
the first r right singular vectors of Y, scaled appropriately, then

yij ≈
r∑

l=1

u(1)
il u(2)

jl

for i = 1, . . . ,F, j = 1, . . . ,T .

For a three-way array Y : F ×n×T , then, the Parafac decom-
position yields matrices U(1) : F×r, U(2) : n×r, and U(3) : T ×r,
so that

yijk ≈
r∑

l=1

u(1)
il u(2)

jl u(3)
kl

for i = 1, . . . ,F, j = 1, . . . ,n, and k = 1, . . . ,T . The matrix U(i)

serves as a low-dimensional representation for variation in the
ith mode.

The three-way Parafac decomposition also can be repre-
sented in the framework of the PVD model. If P := U(1),
D := U(3), and Vj is a diagonal matrix whose entries are from

the jth column of U(2), Vj = diag(U(2)
·j ), then

Y·j· ≈ PVjD

for j = 1, . . . ,n. Thus the three-way Parafac decomposition can
be considered a PVD model in which the Vj matrices are diag-
onal.

2.2 The Tucker Decomposition

For a standard (two-mode) SVD, combining the ith left sin-
gular vector and the jth right singular vector does not im-
prove an approximation when i �= j. No such result holds for
higher-order arrays. The Tucker decomposition (Tucker 1966),
then, considers all combinations from a set of basis vectors in
each mode. Thus a three-way Tucker decomposition consists
of matrices U(1) : F × r1, U(2) : n × r2, and U(3) : T × r3 and
a r1 × r2 × r3 tensor �, where

yijk ≈
r1∑

l1=1

r2∑
l2=1

r3∑
l3=1

λl1l2l3u(1)
il1

u(2)
jl2

u(3)
kl3

.

Here the ijkth entry of the tensor � weights the interactions
among the ith column of U(1), the jth column of U(2), and the
kth column of U(3). The Parafac decomposition is a special case
of the Tucker model where r1 = r2 = r3 and λl1l2l3 = 0 unless
l1 = l2 = l3. Again, the matrix U(i) serves as a low-dimensional
representation for variation in the ith mode.

The three-way Tucker decomposition also can be given in
the PVD framework, where the matrices Vj have a particular
factorized form. If P := U(1) and D := U(3), then

Y·j· ≈ PVjD,

where Vj : r1 × r3 is

V·j· :=
r2∑

l2=1

u(2)
jl2

�·l2·.

Intuitively, here each Vj can be considered a weighted combina-
tion of basis matrices �·1·, . . . ,�·r2·, where the weights specific
to the jth individual are given by the jth row of U(2).
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3. POTENTIAL ISSUES

There are important caveats in the application of PVD and
related methods, such as those discussed in the previous section.
We briefly discuss four common issues that must be considered
before describing an application of PVD.

3.1 Registration

The PVD approach requires that the coordinates of the ma-
trices Y1,Y2, . . . ,Yn be aligned; that is, the (i, j) entry of the
matrix Y1 must correspond to the (i, j) entry of the matrix Y2,
and so on. This is a common issue in the analysis of im-
age populations, where a slight shift or rotation of perspective
can cause difficulties when integrating information across the
images. Here registration methods that transform a collection
of images to the same coordinate system can be useful. For
an overview of image registration methods, see the survey by
Zitova and Flusser (2003).

3.2 Scaling

Direct application of PVD also may be problematic if the ma-
trices Y1,Y2, . . . ,Yn differ in scale. For example, estimation of
P and D can be unduly influenced by a select few matrices with
a large amount of variability. A potential solution is to scale
each matrix to have the same total variation, that is, sum of
squares. This approach was suggested by, for example, Lock et
al. (2011) as a preprocessing step for integrating across multi-
ple data matrices (possibly of different dimension) available for
the same set of objects.

To remove baseline differences between matrices, it is help-
ful to center the data by subtracting the overall mean from each
matrix. To control total variability, one can then divide by the
standard deviation of the matrix entries; that is, letting ȳi be the
mean and si be the standard deviation of the entries of Yi, define

Yscaled
i = Yi − ȳi

si
.

The matrices Yscaled
i then have the same total sum of squared

entries.
We note, however, that the choice of a normalization proce-

dure should depend on the type of data and goals of the analysis.

3.3 Dimensional Compatibility

Recall that for a rank r + 1 SVD approximation, the first r
right singular vectors, left singular vectors, and singular values
remain the same. If the PVD model is estimated via minimizing
the sum of squared residuals, then there is no such dimensional
compatibility; that is, if either dimension A or B is changed,
then all entries of the estimated matrices P, D, and each Vi

may change. This is an important caveat when interpreting the
columns and rows of P and D. In many cases, changing A or
B slightly might not lead to a dramatic change in the entries of
P, D, and Vi, but the stability of these estimates are worth con-
sidering. The Tucker and Parafac models described in Section 2
also are not necessarily compatible on different dimensions.

3.4 Choice of A and B

In light of the foregoing comments, the choices of A and B
in the PVD approximation can be particularly important. In any
case, the choices of A and B may be somewhat arbitary in prac-
tice, and a principled approach to choosing these dimensions is
desired. We do not give a specific approach here, but note that
certain ideas may be borrowed from related work. One potential
criterion is a cross-validation–based estimate of the reconstruc-
tion error, similar to that used to determine the number of prin-
cipal components by Wold (1978). Another potential approach
is permutation testing, similar to the rank selection procedure
described by Lock et al. (2011). Yet another potential approach
may be motivated by random matrix theory (see Shabalin and
Nobel 2010).

4. APPLICATION: FACIAL IMAGES

As an example, we apply PVD and related methods to the
Database of Faces procured by AT&T Laboratories Cambridge.
This is a publicly available database of n = 400 total gray-scale
images for 40 individuals (10 per individual). Each image Yi,
i = 1, . . . ,n, is 92 × 112 in size. All subjects are in an up-
right, frontal position, but facial characteristics (e.g., smiling,
not smiling; glasses, no glasses) vary in each image. We ap-
ply four factorization models to these data and compare the
results. We apply the PVD model in which P and D are esti-
mated by iteratively minimizing the sum of squared residuals,
as in Section 1. We apply the Parafac and Tucker models, also
estimated by least squares using the N-way MATLAB toolbox
(Andersson and Rasmus 2000). We also try a SVD of the vec-
torized data; for each Yi, the rows are stacked to form a vector
of length 92 × 112 = 10,304, and an SVD is applied to the re-
sulting 10,304 × 400 matrix.

We compare these factorized approximations in terms of data
compression for this example; that is, we consider the sum of
squared residuals versus the total number of degrees of freedom
(free parameters) needed for each model. For example, a PVD
approximation with A = B = 5 requires P : 92 × 5, D : 5 × 112,
and Vi : 5 × 5, i = 1, . . . ,400, or 92 × 5 + 5 × 112 + 5 × 5 ×
400 = 11,020 free parameters.

Figure 1(A) displays the sum of squared residuals for each
model as the number of free parameters increases. In this anal-
ysis, for simplicity, we restrict A = B for the PVD model and
r1 = r2 = r3 for the Tucker model. Relaxing these restrictions
could give these methods additional power. The SVD of the
vectorized data is by far the worst-performing method by this
measure, whereas the other three methods are relatively com-
parable. This indicates that there are advantages to exploiting
the two-dimensional nature of these images, rather than simply
vectorizing them.

The resulting approximations for three of the facial images
are shown in Figure 1(B). Here each method uses approxi-
mately 70,000 degrees of freedom, whereas the original data
had 112×92×400 = 4,121,600 total pixel values. The approx-
imations resulting from an SVD of the vectorized data bear lit-
tle resemblance to the original images. The other three methods
are fairly comparable, although one could argue that the Parafac
approximations give the best visual impression.
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(A)

(B)

Figure 1. Application of PVD, Tucker, Parafac, and SVD factorizations to facial image data. (A) The sum of squared residuals versus the
degrees of freedom used to fit the model for each method. (B) Three facial images (at left), and their reconstructions using the four methods.
Each reconstruction uses similar degrees of freedom, close to the vertical line in (A). The Parafac approximation shown uses 72,480 (r = 120)
degrees of freedom, PVD uses 70,252 (A = B = 13), Tucker uses 73,001 (r1 = r2 = r3 = 37), and SVD uses 74,928 (r = 7).

All of the factorization methods compared here can be used
to reduce the dimensionality and provide insight into the pri-
mary modes of variation among a collection of matrices. The
relative success of these factorization methods will depend on
the structure and dimensions of any given dataset. Here we have
focused exclusively on data compression. There are other im-
portant considerations, such as which method provides the best
interpretation for a given application.
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Comment
Ying Nian WU

The population value decomposition method proposed in this
article is an interesting advance in analyzing massive high-
dimensional data. I am impressed by the simplicity of the model
and the associated computational algorithm. Its application in
the Sleep Heart Health Study demonstrates the usefulness of
the proposed methodology.

The proposed computational algorithm is based on subject-
specific singular value decompositions. Is it possible to find
a more rigorous algorithm that minimizes some objective func-
tion?

The proposed model assumes the same P and D for the whole
population. In a population consisting of multiple clusters, it is
possible that different clusters may have different P and D. Is
it possible to extend the model and algorithm to address this
issue?

As the authors point out, the proposed method can be con-
sidered a multistage principal component analysis (PCA). As
such, it shares the limitations of PCA, such as the inability to
capture the non-Gaussian and nonlinear properties in the data.
Although the proposed method appears to be very sensible for
SHHS data, it might not be adequate for other types of image
data, such as natural scene images.

As to dimension reduction, it is worthwhile to mention the
work of Olshausen and Field (1996) on sparse coding that goes
beyond PCA or factor analysis. For PCA, one finds a small
number of orthogonal basis vectors that capture most of the
variations in the data. In sparse coding, however, one finds
a large dictionary of basis vectors that are not necessarily or-
thogonal to one another, so that each observed signal can be
represented by a small number of basis vectors selected from
the dictionary, but different signals may be represented by dif-
ferent sets of selected basis vectors.

Specifically, Olshausen and Field (1996) considered the
modeling of natural image patches (e.g., 12 × 12 images, so
the signal is 144 dimensional vector). Let {Im,m = 1, . . . ,M}
be the set of M image patches represented by the following
linear model:

Im =
K∑

k=1

cm,kBk + εm, (1)
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fornia, Los Angeles, CA 90095 (E-mail: ywu@stat.ucla.edu). I would like to
acknowledge the support of NSF DMS 1007889.

where each Bk is a basis vector of the same dimensionality as
Im and cm,k is the coefficient. In the language of linear regres-
sion, Im is the response vector and (Bk, k = 1, . . . ,K) are the
regressors or predictors. It is often assumed that the number
of regressors K is greater than the dimensionality of the re-
sponse vector (called the “p > n” problem in regression). Mean-
while, it is also assumed that (cm,k, k = 1, . . . ,K) is sparse, in
that for each Im, only a small number of cm,k are nonzero (or
significantly different from 0). Given the dictionary of regres-
sors (Bk, k = 1, . . . ,K), inferring (cm,k, k = 1, . . . ,K) is a vari-
able selection problem. But here the twist is that the regres-
sors (Bk, k = 1, . . . ,K) are unknown and are to be learned from
the training data {Im,m = 1, . . . ,M}. Interestingly, by enforcing
sparsity on (cm,k, k = 1, . . . ,K), the (Bk, k = 1, . . . ,K) learned
from natural image patches are localized, oriented, and elon-
gated wavelets. This provides a statistical justification for the
use of wavelets in representing natural images.

The sparsity of (cm,k, k = 1, . . . ,K) leads to dimension re-
duction of Im. However, unlike PCA, the dimension reduction
in sparse coding is adaptive or subject-specific, because the sets
of nonzero cm,k can be different for different m. This is much
more flexible than PCA. It is also related to the aforementioned
clustering issue, where different clusters may lie in different
low-dimensional subspaces.

Recently (Wu et al. 2010), we attempted to model such clus-
ters. In our approach we first assume that the basis vectors are
already learned or designed, and so there is a dictionary of lo-
calized, oriented, and elongated wavelets {Bx,s,α}, indexed or
attributed by location x, scale s, and orientation α. Each Bx,s,α

is like a stroke for sketching the image. We then model each
cluster by

Im =
n∑

i=1

cm,iBxi+�xm,i,s,αi+�αm,i + εm, (2)

where (Bxi,s,αi , i = 1, . . . ,n) is the set of a small number n
of basis vectors selected from the dictionary for represent-
ing the cluster. (Bxi,s,αi , i = 1, . . . ,n) is like a template with
n strokes. We allow small perturbations (�xm,i,�αm,i, i =
1, . . . ,n) in locations and orientations, so that the template is
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