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Likelihood

◮ Assume a sampling model for data y = (y1, . . . , yn)

◮ Specified by parameters θ, which may be unknown

◮ Often represented as a probability density p(y | θ)

◮ E.g., Gaussian model specified by θ = (µ,σ2):
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Likelihood

◮ The probability density p(y | θ) is often called the likelihood

◮ Sometimes with the notation L(θ; y)

◮ Use this notation when making inferences about θ

◮ Can choose θ to maximize likelihood:

θ̂ = argmaxθ L(θ; y)

◮ i.e., estimate θ to maximize density of observed data

◮ Called maximum likelihood estimation (MLE)

◮ Has been criticized for overfitting
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Prior and posterior

◮ MLE approach assumes θ is fixed (though unknown)

◮ Alternatively, treat θ as a random variable

◮ Give θ a probability density p(θ)

◮ Potentially specified by hyperparameters η: p(θ | η).

◮ The marginal density of y is

p(y) =

󰁝
p(y | θ)p(θ) dθ.

◮ “averaging” over θ
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Prior and posterior

◮ Bayes’ rule for continuous random variables:

p(θ | y) = p(y, θ)

p(y)

=
p(y | θ)p(θ)󰁕
p(y | θ)p(θ) dθ

.

◮ p(θ) is the prior, p(θ | y) the posterior distribution for θ

◮
󰁕
p(y | θ)p(θ) dθ is the normalizing constant

◮ Assures the posterior integrates to 1
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Note on notation

◮ In class, we will use p(·) for *any* pdf

◮ p(y | θ), p(θ), p(θ, y), p(θ | y), p(y), etc.

◮ For discrete variables, use P(·) for *any* pmf.

◮ Common alternative notations:

◮ π for prior: π(θ)

◮ f for sampling model / likelihood: f (y | θ)

◮ m for marginal distribution: m(y)

◮ p for anything else. E.g., p(θ | y), p(θ, y).
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Prior and posterior

◮ If y is discrete, may write

p(θ | y = k) =
P(y = k | θ)p(θ)󰁕
P(y = k | θ)p(θ) dθ

.

◮ If θ is discrete with possible values Θ, may write

P(θ = k | y) = p(y | θ = k)P(θ = k)󰁓
k∈Θ p(y | θ = k)P(θ = k)

.
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Example: Sex proneness

◮ Research suggests the chance of a male or female birth
depends on the family.

◮ The Gupta’s (of CNN fame) have three daughters.

◮ What is the probability their next child will be a daughter?

◮ A (poor) maximum likelihood solution:

◮ Let θ be probability of a daughter for Gupta’s

◮ Binomial likelihood for first 3 births, with y=# daughters, is

P(Y = 3 | θ) = θ3

◮ Maximized at θ̂ = 1
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Example: Sex proneness

Alternatively, use prior for θ

Naive approach: θ ∼ Uniform(0, 1).

So p(θ) = 1 for 0 ≤ θ ≤ 1.

What is p(θ|y = 3)?

Estimate θ using this posterior.

PUBH 8442: Bayes Decision Theory and Data Analysis Prior and Posterior



Beta-Binomial model

Assume θ ∼ Beta(a, b):

p(θ) =
1

B(a, b)
θa−1(1− θ)b−1

where B(·, ·) is the beta function.

If Y ∼ Binomial(n, θ), then

p(θ|y = k) = Beta(a+ k , b + n − k)
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Example: Sex proneness (cont.)

◮ Parental sex proneness is thought to have a very small effect,
if any.

◮ Based on data from many families, a more realistic prior for θ
is

p(θ) = Beta(39, 40).

◮ For the Gupta family, p(θ | y = 3) = Beta(42, 40)

◮ The expected value of Beta(a, b) is a/(a+ b):

◮ Prior estimate is Eθ = 39/79 = 0.494

◮ Posterior estimate is Eθ | y=3 = 42/82 = 0.512
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Example: Sex proneness (cont.)

Prior and posterior densities, given y = 3:
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Code: http:
//www.ericfrazerlock.com/Prior_and_posterior_Rcode1.r
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Conjugate priors

◮ A prior is conjugate for a given likelihood if its posterior
belongs to the same distributional family.

◮ A beta prior is conjugate for binomial data

◮ Both p(θ) and p(θ | y) give beta distributions.

◮ Conjugate priors facilitate computation of posteriors

◮ Particularly useful when updating the posterior adaptively

◮ E.g., after one girl, posterior is Beta(40, 40)

◮ After another girl, posterior is Beta (41, 40), etc.

◮ Otherwise, no profound theoretical justification.
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Conjugate priors

◮ Common conjugate families (credit: John D. Cook)

◮

See http://en.wikipedia.org/wiki/Conjugate_prior
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Normal-normal model

Assume y ∼ Normal(µ,σ2) with σ2 known

If p(µ) = Normal(µ0, τ
2), then

p(µ | y) = Normal

󰀕
σ2µ0 + τ2y

σ2 + τ2
,

σ2τ2

σ2 + τ2

󰀖
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Normal-normal model

◮ Assume y = (y1, . . . , yn) are iid with yi ∼ Normal(µ,σ2), and
σ2 known.

◮ If p(µ) = Normal(µ0, τ
2), then

p(µ | y) = Normal

󰀕
σ2µ0 + nτ2ȳ

σ2 + nτ2
,

σ2τ2

σ2 + nτ2

󰀖

where ȳ =
󰁓

yi
n .

◮ Homework.
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Example: Coke bottles

◮ Coca-Cola bottling machines fill with known variance 0.05 oz

◮ Each machine is calibrated to fill mean capacity µ

◮ Bottles are filled with Gaussian error: Normal(µ, 0.05)

◮ Historical data show machine calibrations are approximately
Normal(12, 0.01).
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Example: Coke bottles

◮ Five randomly selected bottles from a given machine have
sample mean ȳ = 11.88

◮ What is the posterior for the calibration of this machine?

◮ p(µ | y) = Normal(11.94, 0.005)
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Example: Coke bottles

Prior and posterior densities
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Example: Coke bottles

Re-calibrate machines if do not fill within 11.9 and 12.1 oz on
average

What is the probability this machine needs recalibration?

11.8 11.9 12.0 12.1 12.2

0
1

2
3

4
5

6

Normal(12,0.01) Prior

mu

de
ns
ity

Φ(
11.9− 11.94√

0.005
) + 1− Φ(

12.1− 11.94√
0.005

) ≈ 0.30
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Prior and posterior predictive

◮ Often we are not interested in making inference on θ, but
rather on our best guess for the distribution of yi

◮ Can estimate density of the full model by integrating over θ

◮ The prior predictive is the marginal distribution of an
observation given the prior:

p(y1) =

󰁝
p(y1 | θ)p(θ)dθ

◮ The posterior predictive is the distribution for a future
observation yn+1 given the data so far. If

y1, . . . , yn, yn+1
iid∼ p(y | θ),

p(yn+1 | y) =
󰁝

p(yn+1 | θ)p(θ | y)dθ.
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Normal-normal predictives

◮ For the normal-normal model introduced earlier, the prior
predictive is

p(yi ) = Normal
󰀃
µ0, τ

2 + σ2
󰀄

◮ The posterior predictive is

p(yn+1 | y) = Normal

󰀕
σ2µ0 + nτ2ȳ

σ2 + nτ2
,

σ2τ2

σ2 + nτ2
+ σ2

󰀖

◮ Homework
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Example: Coke bottles (cont)

The predictive for a single bottle from a given machine is

Normal(12, 0.06)

The predictive for the sixth bottle after the five observed is

Normal(11.94, 0.055)
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