Prior and Posterior

PUBH 8442: Bayes Decision Theory and Data Analysis

Eric F. Lock UMN Division of Biostatistics, SPH elock@umn.edu

01/27/2025

PUBH 8442: Bayes Decision Theory and Data Analysis Prior and Posterior

Likelihood

- Assume a sampling model for data $\mathbf{y} = (y_1, \dots, y_n)$
- Specified by parameters θ , which may be unknown
- Often represented as a probability density $p(\mathbf{y} | \theta)$

• E.g., Gaussian model specified by $\theta = (\mu, \sigma^2)$:

$$p(y_1 \mid \theta) = rac{1}{\sigma\sqrt{2\pi}} \exp\left\{-rac{(y_1 - \mu)^2}{2\sigma^2}
ight\}$$

And under independent $y'_i s$:

$$p(\mathbf{y} \mid \theta) = \left(\frac{1}{\sigma\sqrt{2\pi}}\right)^n \exp\left\{-\frac{\sum_{i=1}^n (y_i - \mu)^2}{2\sigma^2}\right\}$$

▶ The probability density $p(\mathbf{y} | \theta)$ is often called the *likelihood*

Sometimes with the notation $L(\theta; \mathbf{y})$

- \blacktriangleright Use this notation when making inferences about θ
- Can choose θ to maximize likelihood:

$$\hat{\theta} = \operatorname{argmax}_{\theta} L(\theta; \mathbf{y})$$

- \blacktriangleright i.e., estimate θ to maximize density of observed data
- Called maximum likelihood estimation (MLE)
- Has been criticized for overfitting

Prior and posterior

- MLE approach assumes θ is fixed (though unknown)
- > Alternatively, treat θ as a random variable
- Give θ a probability density $p(\theta)$
 - ▶ Potentially specified by hyperparameters η : $p(\theta \mid \eta)$.

► The *marginal* density of **y** is

$$p(\mathbf{y}) = \int p(\mathbf{y} \mid \theta) p(\theta) \, d\theta.$$

▶ "averaging" over θ

Prior and posterior

Bayes' rule for continuous random variables:

$$p(\theta \mid \mathbf{y}) = \frac{p(\mathbf{y}, \theta)}{p(\mathbf{y})}$$
$$= \frac{p(\mathbf{y} \mid \theta)p(\theta)}{\int p(\mathbf{y} \mid \theta)p(\theta) \, d\theta}.$$

▶ $p(\theta)$ is the prior, $p(\theta | \mathbf{y})$ the posterior distribution for θ

• $\int p(\mathbf{y} \mid \theta) p(\theta) d\theta$ is the normalizing constant

Assures the posterior integrates to 1

Note on notation

▶ In class, we will use $p(\cdot)$ for *any* pdf

▶ $p(\mathbf{y} \mid \theta), p(\theta), p(\theta, \mathbf{y}), p(\theta \mid \mathbf{y}), p(\mathbf{y}), \text{ etc.}$

- For discrete variables, use $P(\cdot)$ for *any* pmf.
- Common alternative notations:
 - π for prior: $\pi(\theta)$
 - f for sampling model / likelihood: $f(\mathbf{y} \mid \theta)$
 - *m* for marginal distribution: $m(\mathbf{y})$
 - ▶ *p* for anything else. E.g., $p(\theta | \mathbf{y}), p(\theta, \mathbf{y})$.

Prior and posterior

▶ If **y** is discrete, may write

$$p(\theta \mid \mathbf{y} = \mathbf{k}) = \frac{P(\mathbf{y} = \mathbf{k} \mid \theta)p(\theta)}{\int P(\mathbf{y} = \mathbf{k} \mid \theta)p(\theta) \, d\theta}.$$

▶ If θ is discrete with possible values Θ , may write

$$P(\theta = k \mid \mathbf{y}) = \frac{p(\mathbf{y} \mid \theta = k)P(\theta = k)}{\sum_{k \in \Theta} p(\mathbf{y} \mid \theta = k)P(\theta = k)}$$

- Research suggests the chance of a male or female birth depends on the family.
- ▶ The Gupta's (of CNN fame) have three daughters.
- ▶ What is the probability their next child will be a daughter?
- A (poor) maximum likelihood solution:
 - Let θ be probability of a daughter for Gupta's
 - ▶ Binomial likelihood for first 3 births, with y=# daughters, is

$$P(Y=3 \mid \theta) = \theta^3$$

• Maximized at
$$\hat{\theta} = 1$$

Example: Sex proneness

- Alternatively, use prior for $\boldsymbol{\theta}$
- Naive approach: $\theta \sim \text{Uniform}(0, 1)$.

• So
$$p(\theta) = 1$$
 for $0 \le \theta \le 1$.

• What is $p(\theta|y=3)$?

• Estimate θ using this posterior.

Beta-Binomial model

Assume θ ~ Beta(a, b):

$$p(\theta) = \frac{1}{B(a,b)} \theta^{a-1} (1-\theta)^{b-1}$$

where $B(\cdot, \cdot)$ is the *beta function*.

• If $Y \sim \text{Binomial}(n, \theta)$, then

$$p(\theta|y=k) = \text{Beta}(a+k, b+n-k)$$

Example: Sex proneness (cont.)

- Parental sex proneness is thought to have a very small effect, if any.
- \blacktriangleright Based on data from many families, a more realistic prior for θ is

 $p(\theta) = \mathsf{Beta}(39, 40).$

- For the Gupta family, $p(\theta \mid y = 3) = \text{Beta}(42, 40)$
- ► The expected value of Beta(a, b) is a/(a + b):
 - Prior estimate is $E_{\theta} = 39/79 = 0.494$
 - Posterior estimate is $E_{\theta \mid y=3} = 42/82 = 0.512$

Example: Sex proneness (cont.)

• **Prior** and posterior densities, given y = 3:

Beta(1,1) prior Beta(39,40) prior \sim 4 Ś LO ო density density 4 N ო N -0 0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 theta theta

Code: http: //www.ericfrazerlock.com/Prior_and_posterior_Rcode1.r

PUBH 8442: Bayes Decision Theory and Data Analysis Prior and Posterior

Conjugate priors

- A prior is *conjugate* for a given likelihood if its posterior belongs to the same distributional family.
- A beta prior is conjugate for binomial data
 - ▶ Both $p(\theta)$ and $p(\theta | y)$ give beta distributions.
- Conjugate priors facilitate computation of posteriors
- Particularly useful when updating the posterior adaptively
 - ▶ E.g., after one girl, posterior is Beta(40,40)
 - After another girl, posterior is Beta (41,40), etc.
- Otherwise, no profound theoretical justification.

Conjugate priors

Common conjugate families (credit: John D. Cook)

See http://en.wikipedia.org/wiki/Conjugate_prior

PUBH 8442: Bayes Decision Theory and Data Analysis Prior and Posterior

Normal-normal model

• Assume $y \sim \operatorname{Normal}(\mu, \sigma^2)$ with σ^2 known

• If
$$p(\mu) = \mathsf{Normal}(\mu_0, \tau^2)$$
, then

$$p(\mu \mid y) = \text{Normal}\left(\frac{\sigma^2 \mu_0 + \tau^2 y}{\sigma^2 + \tau^2}, \frac{\sigma^2 \tau^2}{\sigma^2 + \tau^2}\right)$$

Normal-normal model

► If
$$p(\mu) = \text{Normal}(\mu_0, \tau^2)$$
, then
 $p(\mu | \mathbf{y}) = \text{Normal}\left(\frac{\sigma^2 \mu_0 + n\tau^2 \bar{y}}{\sigma^2 + n\tau^2}, \frac{\sigma^2 \tau^2}{\sigma^2 + n\tau^2}\right)$
where $\bar{y} = \frac{\sum y_i}{n}$.

► Homework.

Coca-Cola bottling machines fill with known variance 0.05 oz

 \blacktriangleright Each machine is calibrated to fill mean capacity μ

• Bottles are filled with Gaussian error: Normal(μ , 0.05)

 Historical data show machine calibrations are approximately Normal(12, 0.01).

Example: Coke bottles

- Five randomly selected bottles from a given machine have sample mean $\bar{y} = 11.88$
- ▶ What is the posterior for the calibration of this machine?

•
$$p(\mu \mid \mathbf{y}) = \text{Normal}(11.94, 0.005)$$

Example: Coke bottles

• Prior and posterior densities

Normal(12,0.01) Prior

Code: http: //www.ericfrazerlock.com/Prior_and_posterior_Rcode2.r

PUBH 8442: Bayes Decision Theory and Data Analysis Prior and Posterior

Example: Coke bottles

- Re-calibrate machines if do not fill within 11.9 and 12.1 oz on average
- What is the probability this machine needs recalibration?

Normal(12,0.01) Prior

$$\Phi(\frac{11.9 - 11.94}{\sqrt{0.005}}) + 1 - \Phi(\frac{12.1 - 11.94}{\sqrt{0.005}}) \approx 0.30$$

PUBH 8442: Bayes Decision Theory and Data Analysis

Prior and Posterior

Prior and posterior predictive

- Often we are not interested in making inference on θ, but rather on our best guess for the distribution of y_i
- \blacktriangleright Can estimate density of the full model by integrating over θ
- The prior predictive is the marginal distribution of an observation given the prior:

$$p(y_1) = \int p(y_1 \mid \theta) p(\theta) d\theta$$

The posterior predictive is the distribution for a future observation y_{n+1} given the data so far. If y₁,..., y_n, y_{n+1} ^{iid} _∼ p(y | θ),

$$p(y_{n+1} \mid \mathbf{y}) = \int p(y_{n+1} \mid \theta) p(\theta \mid \mathbf{y}) d\theta.$$

 For the normal-normal model introduced earlier, the prior predictive is

$$p(y_i) =$$
Normal $(\mu_0, \tau^2 + \sigma^2)$

► The posterior predictive is

$$p(y_{n+1} \mid \mathbf{y}) = \text{Normal}\left(\frac{\sigma^2 \mu_0 + n\tau^2 \bar{y}}{\sigma^2 + n\tau^2}, \frac{\sigma^2 \tau^2}{\sigma^2 + n\tau^2} + \sigma^2\right)$$

Homework

Example: Coke bottles (cont)

- The predictive for a single bottle from a given machine is Normal(12, 0.06)
- The predictive for the sixth bottle after the five observed is

Normal(11.94, 0.055)

