Prior and Posterior

PUBH 8442: Bayes Decision Theory and Data Analysis

Eric F. Lock
UMN Division of Biostatistics, SPH
elock@umn.edu

01/25/2021

Likelihood

- Assume a sampling model for data $\mathbf{y}=\left(y_{1}, \ldots, y_{n}\right)$
- Specified by parameters θ, which may be unknown
- Often represented as a probability density $p(\mathbf{y} \mid \theta)$
- E.g., Gaussian model specified by $\theta=\left(\mu, \sigma^{2}\right)$:

$$
p\left(y_{1} \mid \theta\right)=\frac{1}{\sigma \sqrt{2 \pi}} \exp \left\{-\frac{\left(y_{1}-\mu\right)^{2}}{2 \sigma^{2}}\right\}
$$

And under independent $y_{i}^{\prime} s$:

$$
p(\mathbf{y} \mid \theta)=\left(\frac{1}{\sigma \sqrt{2 \pi}}\right)^{n} \exp \left\{-\frac{\sum_{i=1}^{n}\left(y_{i}-\mu\right)^{2}}{2 \sigma^{2}}\right\}
$$

Likelihood

- The probability density $p(\mathbf{y} \mid \theta)$ is often called the likelihood
- Sometimes with the notation $L(\theta ; \mathbf{y})$
- Use this notation when making inferences about θ
- Can choose θ to maximize likelihood:

$$
\hat{\theta}=\operatorname{argmax}_{\theta} L(\theta ; \mathbf{y})
$$

- i.e., estimate θ to maximize density of observed data
- Called maximum likelihood estimation (MLE)
- Has been criticized for overfitting

- MLE approach assumes θ is fixed (though unknown)
- Alternatively, treat θ as a random variable
- Give θ a probability density $p(\theta)$
- Potentially specified by hyperparameters $\eta: p(\theta \mid \eta)$.
- The marginal density of \mathbf{y} is

$$
p(\mathbf{y})=\int p(\mathbf{y} \mid \theta) p(\theta) d \theta
$$

- "averaging" over θ
- Bayes' rule for continuous random variables:

$$
\begin{aligned}
p(\theta \mid \mathbf{y}) & =\frac{p(\mathbf{y}, \theta)}{p(\mathbf{y})} \\
& =\frac{p(\mathbf{y} \mid \theta) p(\theta)}{\int p(\mathbf{y} \mid \theta) p(\theta) d \theta}
\end{aligned}
$$

- $p(\theta)$ is the prior, $p(\theta \mid \mathbf{y})$ the posterior distribution for θ
- $\int p(\mathbf{y} \mid \theta) p(\theta) d \theta$ is the normalizing constant
- Assures the posterior integrates to 1

Note on notation

- In class, we will use $p(\cdot)$ for *any* pdf
- $p(\mathbf{y} \mid \theta), p(\theta), p(\theta, \mathbf{y}), p(\theta \mid \mathbf{y}), p(\mathbf{y})$, etc.
- For discrete variables, use $P(\cdot)$ for *any* pmf.
- Common alternative notations:
- π for prior: $\pi(\theta)$
- f for sampling model / likelihood: $f(\mathbf{y} \mid \theta)$
- m for marginal distribution: $m(\mathbf{y})$
- p for anything else. E.g., $p(\theta \mid \mathbf{y}), p(\theta, \mathbf{y})$.
- If \mathbf{y} is discrete, may write

$$
p(\theta \mid \mathbf{y}=\mathbf{k})=\frac{P(\mathbf{y}=\mathbf{k} \mid \theta) p(\theta)}{\int P(\mathbf{y}=\mathbf{k} \mid \theta) p(\theta) d \theta}
$$

- If θ is discrete with possible values Θ, may write

$$
P(\theta=k \mid \mathbf{y})=\frac{p(\mathbf{y} \mid \theta=k) P(\theta=k)}{\sum_{k \in \Theta} p(\mathbf{y} \mid \theta=k) P(\theta=k)}
$$

Example: Sex proneness

- Research suggests the chance of a male or female birth depends on the family.
- The Gupta's (of CNN fame) have three daughters.
- What is the probability their next child will be a daughter?
- A (poor) maximum likelihood solution:
- Let θ be probability of a daughter for Gupta's
- Binomial likelihood for first 3 births, with $y=\#$ daughters, is

$$
P(Y=3 \mid \theta)=\theta^{3}
$$

- Maximized at $\hat{\theta}=1$

Example: Sex proneness

- Alternatively, use prior for θ
- Naive approach: $\theta \sim \operatorname{Uniform}(0,1)=\operatorname{Beta}(1,1)$
- So $p(\theta)=1$ for $0 \leq \theta \leq 1$.
- What is $p(\theta \mid y=3)$?

$$
\begin{aligned}
P(x=3) & =\int P(y=3 \mid \theta) P(\theta) d \theta \\
& =\int_{0}^{1} \theta^{3} \cdot 1 d \theta \\
& =\frac{1}{4}-\theta=\frac{1}{4}
\end{aligned}
$$

- Estimate θ using this posterior.

$$
\begin{aligned}
& \text { Estimate } \theta \text { using this posterior. } \\
& E(\theta \mid y=3)=\int_{0}^{1} \theta \cdot P(\theta \mid y=3) d \theta=\int_{0}^{1} 4 \theta^{4} \partial \theta \\
& =\frac{4}{5}=0.8
\end{aligned}
$$

Beta-Binomial model

- Assume $\theta \sim \operatorname{Beta}(a, b)$:

$$
p(\theta)=\frac{1}{B(a, b)} \theta^{a-1}(1-\theta)^{b-1}
$$

where $B(\cdot, \cdot)$ is the beta function.

- If $Y \sim \operatorname{Binomial}(n, \theta)$, then

$$
\left.\begin{array}{l}
p(\theta \mid y=k)=\operatorname{Beta}(a+k, b+n-k) \\
P(y=k \mid \theta)=\binom{n}{k} \theta^{k}(1-\theta)^{n-k} \\
P(y=k \mid \theta) \cdot P(\theta)=\underbrace{a+k-1}_{\text {Constant }}(1-\theta)^{b+n-k-1} \\
\text { So, } P\left(\theta(y=k) \propto \theta^{a+k-1}(1-\theta)^{b+n-k-1} \alpha \operatorname{ata} a(\alpha+k,\right. \\
b+n-k
\end{array}\right) .
$$

Example: Sex proneness (cont.)

- Parent proneness is thought to have a very small effect, if any.
- Based on data from many families, a more realistic prior for θ is

$$
p(\theta)=\operatorname{Beta}(39,40) .
$$

- For the Gupta family, $p(\theta \mid y=3)=\operatorname{Beta}(42,40)$
- The expected value of $\operatorname{Beta}(a, b)$ is $a /(a+b)$:
- Prior estimate is $E_{\theta}=39 / 79=0.494$
- Posterior estimate is $E_{\theta \mid y=3}=42 / 82=0.512$

Example: Sex proneness (cont.)

- Prior and posterior densities, given $y=3$:

Code: http:
//www.ericfrazerlock.com/Prior_and_posterior_Rcode1.r

Conjugate priors

- A prior is conjugate for a given likelihood if its posterior belongs to the same distributional family.
- A beta prior is conjugate for binomial data
- Both $p(\theta)$ and $p(\theta \mid y)$ give beta distributions.
- Conjugate priors facilitate computation of posteriors
- Particularly useful when updating the posterior adaptively
- E.g., after one girl, posterior is $\operatorname{Beta}(40,40)$
- After another girl, posterior is Beta $(41,40)$, etc.
- Otherwise, no profound theoretical justification.

Conjugate priors

- Common conjugate families (credit: John D. Cook)

See http://en.wikipedia.org/wiki/Conjugate_prior

$$
P(y \mid \mu)=\frac{1}{\delta \sqrt{2 \pi}} e^{\left\{\cdot \frac{(y-\mu)^{2}}{2 \sigma^{2}}\right\}}
$$

- Assume $y \sim \operatorname{Normal}\left(\mu, \sigma^{2}\right)$ with σ^{2} known
- If $p(\mu)=\operatorname{Normal}\left(\mu_{0}, \tau^{2}\right)$, then $P(h)=\frac{1}{\Gamma \sqrt{2} \pi} e^{\left\{\frac{-\left(\mu-\mu_{0}\right)^{2}}{2 T^{2}}\right\}}$

$$
p(\mu \mid y)=\operatorname{Normal}\left(\frac{\sigma^{2} \mu_{0}+\tau^{2} y}{\sigma^{2}+\tau^{2}}, \frac{\sigma^{2} \tau^{2}}{\sigma^{2}+\tau^{2}}\right)
$$

$$
P(\mu \mid y) \propto P(y \mid \mu) P(\mu) \approx A \subset B
$$

$$
\alpha \exp \left\{-\frac{(y-\mu)^{2}}{2 \sigma^{2}}-\frac{\left(\mu-\mu_{0}\right)^{2}}{2 \Gamma^{2}}\right\}
$$

$$
\begin{aligned}
\therefore & =\exp -\frac{(n}{2} \\
& \in N(A, B)
\end{aligned}
$$

Normal-normal model

- Assume $\mathbf{y}=\left(y_{1}, \ldots, y_{n}\right)$ are iid with $y_{i} \sim \operatorname{Normal}\left(\mu, \sigma^{2}\right)$, and σ^{2} known.
- If $p(\mu)=\operatorname{Normal}\left(\mu_{0}, \tau^{2}\right)$, then

$$
p(\mu \mid \mathbf{y})=\operatorname{Normal}\left(\frac{\sigma^{2} \mu_{0}+n \tau^{2} \bar{y}}{\sigma^{2}+n \tau^{2}}, \frac{\sigma^{2} \tau^{2}}{\sigma^{2}+n \tau^{2}}\right)
$$

where $\bar{y}=\frac{\sum y_{i}}{n}$.

- Homework.

Example: Coke bottles

- Coca-Cola bottling machines fill with known variance 0.05 oz
- Each machine is calibrated to fill mean capacity μ
- Bottles are filled with Gaussian error: Normal $(\mu, 0.05)$ $P\left(y_{i} \mid \mu\right)$
- Historical data show machine calibrations are approximately Normal (12, 0.01).

Example: Coke bottles

- Five randomly selected bottles from a given machine have sample mean $\bar{y}=11.88$
- What is the posterior for the calibration of this machine?

$$
\begin{array}{rl}
\sigma^{2}=0.05 & P(\mu \mid \vec{y}) \\
r^{2}=0.01 & =M(A, B) \\
M_{0}=12 & A=11,9 y=0.005 \\
& \triangleright p(\mu \mid \mathbf{y})=\operatorname{Normal}(11.94,0.005)
\end{array}
$$

Example: Coke bottles

- Prior and posterior densities

Normal(12,0.01) Prior

Code: http:
//www.ericfrazerlock.com/Prior_and_posterior_Rcode2.r

Example: Coke bottles

- Re-calibrate machines if do not fill within 11.9 and 12.1 oz on average
- What is the probability this machine needs recalibration?

Normal(12,0.01) Prior

- Often we are not interested in making inference on θ, but rather on our best guess for the distribution of y_{i}
- Can estimate density of the full model by integrating over θ
- The prior predictive is the marginal distribution of an observation given the prior:

$$
p\left(y_{1}\right)=\int p\left(y_{1} \mid \theta\right) p(\theta) d \theta
$$

- The posterior predictive is the distribution for a future observation y_{n+1} given the data so far. If

$$
\begin{aligned}
y_{1}, \ldots, y_{n}, y_{n+1} \stackrel{i i d}{\sim} p(y \mid \theta) & \\
\qquad p\left(y_{n+1} \mid \mathbf{y}\right)=\int & p\left(y_{n+1} \mid \theta\right) p(\theta \mid \mathbf{y}) d \theta \\
& \left.\left.\left.=\int p\left(y_{n+}\right), \theta\right) \vec{y}\right)\right\rangle \theta
\end{aligned}
$$

Normal-normal predictives

- For the normal-normal model introduced earlier, the prior predictive is

$$
p\left(y_{i}\right)=\operatorname{Normal}\left(\mu_{0}, \tau^{2}+\sigma^{2}\right)
$$

- The posterior predictive is

$$
p\left(y_{n+1} \mid \mathbf{y}\right)=\operatorname{Normal}\left(\frac{\sigma^{2} \mu_{0}+n \tau^{2} \bar{y}}{\sigma^{2}+n \tau^{2}}, \frac{\sigma^{2} \tau^{2}}{\sigma^{2}+n \tau^{2}}+\sigma^{2}\right)
$$

- Homework

Example: Coke bottles (cont)

- The predictive for a single bottle from a given machine is

Normal(12, 0.06)

- The predictive for the sixth bottle after the five observed is Normal(11.94, 0.055)

Normal(12,0.01) Prior

