Rejection Sampling

PUBH 8442: Bayes Decision Theory and Data Analysis

Eric F. Lock UMN Division of Biostatistics, SPH elock@umn.edu

03/27/2024

PUBH 8442: Bayes Decision Theory and Data Analysis Rejection Sampling

- We would like to sample from a (potentially unknown) density
- \blacktriangleright This is equivalent to sampling uniformly from the area under p
- ▶ If $p \propto q$, this is also equivalent to sampling uniformly from area under q
- In our context, p is a posterior distribution and q is the unnormalized version

$$q(\theta) = p(\mathbf{y} \mid \theta) p_{\theta}(\theta).$$

▶ How to sample uniformly underneath *q*?

 Choose an *enveloping function Mg* that you can sample underneath

 $q(heta) \leq Mg(heta)$

▶ Ignore those samples that are above *q*

- ▶ Those samples underneath *q* are uniform underneath *q*. Use these.
- In practice, g is a density function and M is a constant to assure Mg envelopes q

Rejection sampling

• Algorithm to simulate from posterior distribution $p(\theta \mid \mathbf{y})$:

- Generate $heta_j \sim g(heta)$
- ▶ Generate *U* ~ Uniform(0, 1)

• Note $(\theta_j, UMg(\theta_j))$ is a random point under $Mg(\theta_j)$

▶ If $MUg(\theta_j) < p(\mathbf{y} | \theta_j)p(\theta_j)$ accept θ_j ; otherwise reject θ_j .

- ▶ The accepted θ_j correspond to draws from $p(\theta | \mathbf{y})$
- Repeat above process until desired number of (accepted) samples N is obtained

• Equivalent algorithm:

① Generate
$$\theta_j \sim g(\theta)$$

2 Accept with probability

$$p_j = \frac{p(\mathbf{y} \mid \theta_j) p(\theta_j)}{Mg(\theta_j)}$$

otherwise reject θ_j .

- Similar to importance sampling
 - Simulations from known density g(θ) used to approximate unknown p(θ | y)
 - Importance sampling is analogous to using p_j as weights instead of acceptance probabilities
- Rejection sampling yields direct samples from p(θ | y) (not weighted samples)
- ► Envelope function $Mg(\theta)$ MUST satisfy $Mg(\theta) \ge p(\mathbf{y} \mid \theta)p(\theta) \forall \theta$
 - Otherwise results are inconsistent

Ideally, M is as small as possible and Mg(θ) is close to p(θ | y)p(θ) • Goal: simulate samples from $p(\theta) = N(0, 1)$ using rejection sampling¹

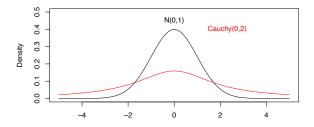
• Use $g(\theta) = \text{Cauchy}(0, 2)$ as envelope function.

$$g(heta) = rac{1}{2\pi \left[1 + \left(rac{ heta}{2}
ight)^2
ight]}$$

¹Example source: http://glau.ca/?p=227 PUBH 8442: Bayes Decision Theory and Data Analysis Rejection Samp

Simple example: normal density

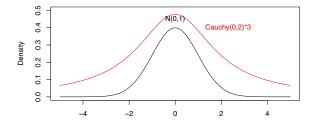
• Consider M = 1:



http://www.ericfrazerlock.com/Rejection_Sampling_Rcode1.r

Not a proper envelope

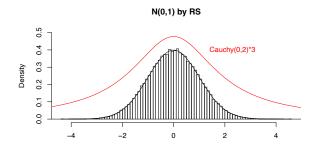
Simple example: normal density



http://www.ericfrazerlock.com/Rejection_Sampling_Rcode1.rThis is a proper envelope (though somewhat inefficient)

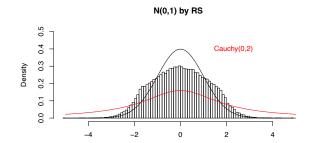
Simple example: normal density

• Histogram of accepted samples using M = 3:



http://www.ericfrazerlock.com/Rejection_Sampling_Rcode1.r

• Histogram of accepted samples using M = 1:



http://www.ericfrazerlock.com/Rejection_Sampling_Rcode1.r