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DNA Methylation

Methyl binds to CpG (cytosine-phosphate-guanine) sites

!

Methyl'

DNA'

Over 25 million CpG sites in human genome

Methylation varies over sites / individuals / cell types

Can affect gene transcription
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TCGA array data: BRCA

N = 597 breast cancer tumor samples

From The Cancer Genome Atlas project

Methylation measured for M = 21, 986 CpG sites

Illumina HumanMethylation27 array

Measurements from 0 (no methylation) to 1 (fully methylated)

Goal: study role of methylation in clinical heterogeneity

Basal (N0 = 112) vs. non-Basal (N1 = 485) tumor subtypes
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Example distributions

Distribution of methylation values for select CpG sites
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Kernel mixtures

Model distribution of CpG m (m = 1, . . . ,M) as a mixture:

xmn ∼
K

k=1

πmkFk

{Fk}Kk=1 are shared kernels

Πm = {πmk}Kk=1 are CpG-specific weights

Fk is Normal(µk ,σk) truncated between 0 and 1
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Bayesian estimation

Use normal-inverse-gamma prior for (µk ,σk)’s

Use Dirichlet(α) prior for Πm’s

Gibbs sample from conditional posteriors of

{(µk ,σk)}Kk=1

{Πm}Mm=1

Kernel memberships {Cm}Mm=1

Estimate α via maximum likelihood during sampling
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Choice of K

Choose K to maximize likelihood under cross validation.

For fixed K :

Estimate F1, . . . ,FK , and α from a sub-sample of CpGs

For each remaining CpG:

Hold out a random observation

Estimate kernel weights on N − 1 remaining observations

Compute log-density for held out sample

Consider mean log-density for all held-out observations
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Cross-validated log-likelihood

2 4 6 8 10

0.
9

1.
0

1.
1

1.
2

1.
3

1.
4

1.
5

K

M
ea

n 
lo

g−
lik

el
ih

oo
d

●

● ●

● ●
● ● ●

●
●

●

Common kernels
Separate kernels (α= 1)
Separate kernels (α= 0.5)

Choose K = 9
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Kernel distributions
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Fitted mixture examples
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Test for group equality

For group comparisons at a CpG, t- and Wilcoxon tests are
most common

Bock 2012, Laird 2013

General tests for distributional equality are rarely used

But they are well motivated...

Cancer & normal cells show different variability (Hansen 2011)

Groups may have differential “stability” across cells:

Example CpG
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Test for group equality

Compare Basal vs. non-Basal tumor subtypes at each CpG

Assess whether subtype distributions are different

Subtype distributions F
(0)
m ,F

(1)
m are mixture of common kernels

F
(0)
m =

K

k=1

π
(0)
mkFk and F

(1)
m =

K

k=1

π
(1)
mkFk ,

For each m test

H0m : π
(0)
mk = π

(1)
mk for all k

H1m : π
(0)
mk ∕= π

(1)
mk for some k .
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Bayesian framework

Estimate and fix F1, . . . ,FK , and α as before.

Under H0m, Π
(0)
m = Π

(1)
m = Πm ∼ Dirichlet(α)

Under H1m, Π
(0)
m ,Π

(1)
m ∼ Dirichlet(α) are independent

P0 is shared prior probability of equality at a given CpG

P0 given Uniform(0, 1) prior (see Scott & Berger 2010)
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Posterior computation

The full conditional posterior probability for H0m is

P0β(α)β(nm + α)

P0β(α)β(nm + α) + (1− P0)β(n
(0)
m + α)β(n

(1)
m + α)

.

n
(i)
m gives number of realizations in group i from each kernel

nm = n
(0)
m + n

(1)
m

β is the multivariate beta function

β(α) =

K
k=1 Γ(αk)

Γ(
K

k=1 αk)
.
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Posterior computation

In practice n
(0)
m , n

(1)
m are unknown

Kernel memberships are inferred probabilistically

Gibbs sample from conditional posteriors of

{Π(0)
m ,Π

(1)
m }Mm=1

{n(0)m , n
(1)
m }Mm=1

{P(H0m | n(0)m , n
(1)
m )}Mm=1

P0

Average over conditional posterior probabilities for H0m
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Basal vs. non-Basal groups

Prior probability of equality: P̂0 = 0.82

Distribution of posterior probabilities:
Histogram of pr(H0m|X)
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Basal vs. non-Basal groups

cg17095936, pr(H0|X)<0.001
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Basal vs. non-Basal groups

2117 CpG sites with P(H0m|X ) < 0.01

Consider association with expression at their gene:

Expression−Methylation Rho Correlations

Spearman's correlation
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sNegative association & in PAM50 signature (Parker, 2009):

MYBL2, EGFR, MIA, SFRP1 and MLPH
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Related work

Frequentist tests for distributional equality

Anderson-Darling, Shapiro-Wilk

Bayesian nonparametric tests using Dirichlet processes

Dunson & Peddada 2008, Pennell & Dunson 2008

Bayesian nonparametric tests using Polya trees

Ma & Wang 2011, Holmes et al 2014
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http://biomet.oxfordjournals.org/content/95/4/859.short
http://onlinelibrary.wiley.com/store/10.1111/j.1541-0420.2007.00885.x/asset/j.1541-0420.2007.00885.x.pdf?v=1&t=i2rsprvf&s=dcb2692ceaec54e873908bdb2f80ac31d6f51f0e
https://stat.duke.edu/~lm186/files/optree.pdf
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Methods comparison for TCGA data

Apply several methods to TCGA data

t-test, Wilcoxon test, Anderson-Darling test, Dunson &
Peddada (RDDP), Ma & Wang (co-OPT), Holmes et al.
(PT), and shared kernel test with fixed P0 = 0.5.

Permute class labels for each CpG and apply again.

Permutation creates a null model to assess type I error

Compare distribution of results (p-values or Bayes factors) for
true and permuted data.
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Methods comparison for TCGA data
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**THEORETICAL INTERLUDE***
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Abstract testing framework

Two distributions F (0),F (1) are mixtures

F (0) =
K

k=1

π
(0)
k Fk and F (1) =

K

k=1

π
(1)
k Fk ,

Test whether π
(0)
k = π

(1)
k ∀ k.

F (0),F (1) describe two populations with same strata

Test whether strata have different proportions
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Abstract testing framework

If strata/kernel memberships are known:

Test for association in 2× K table

Frequentist approaches: Chi-Square, Fisher’s exact test

Bayesian Approaches: Good & Crook 1987, Albert 1997

If memberships (and perhaps the Fk ’s) are unknown:

Little statistical literature

Addressed partly in Xu et al 2010
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http://projecteuclid.org/euclid.aos/1176350368
http://works.bepress.com/jim_albert/13/
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Asymptotic forms

Consider behavior of the full conditional for H0:

P0β(α)β(n + α)

P0β(α)β(nm + α) + (1− P0)β(n(0) + α)β(n(1) + α)

as N → ∞.

For the following assume:

λ0 =
N0

N0+N1
is fixed as N0 + N1 = N → ∞
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Asymptotic forms

THEOREM: Can derive a closed asymptotic form for the full
conditional

CORROLARY: Can fully characterize asymptotic distribution
under H0 and H1

Under H0 : Π
(0) = Π(1) = Π, the log Bayes factor has order

K − 1

2
log(N) + Op(1)

Under H1 : Π
(0) ∕= Π(1), let Π∗ = λ0Π

(0) + (1− λ0)Π
(1).

The log of the Bayes factor has order

−N


λ0π
(0)
k log


π
(0)
k

π∗
k


+(1−λ0)π

(1)
k log


π
(1)
k

π∗
k


+Op


N1/2


,
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Asymptotic forms

Posterior probability of H0 converges

Sublinearly to 1 under H0

Exponentially to 0 under H1

Such rates have been observed for several Bayesian tests

Kass & Raftery 1995; Walker 2004; Johnson & Rossell 2010.

Often such models are “local prior densities”

The parameter space under H0 has positive density under H1
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Consistency under misspecification

Bayesian context:

True distribution is not within support of prior

E.g: data may not result from a finite Gaussian mixture

Misspecified models not “fully” consistent

May still be consistent as a test for distributional equality
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Consistency under misspecification

Use work of Kleijn & Van der Vaaart (2006)

General behavior under Bayesian misspecification:

Let F be space of all distributions admitted by prior

Let F0 be data generating distribution

Let F ∗ be distribution in F minimizing KL-divergence to F0

Posterior concentrates on F ∗ as N → ∞

Little work on misspecification asymptotics for Bayesian tests
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Misspecification for finite mixtures

Let x1, . . . , xN be independent with density f0.

Let F be define all convex combinations of densities {fk}Kk=1

Let P define a prior with positive support over F.

Let f ∗ = argmin
f ∈F

KL(f0||f ∗)

THEOREM: let Π∗ = (π∗
1, . . . ,π

∗
K ) be the component weights

corresponding to f ∗. Assume Π∗ is unique in that
πk fk =


π∗
k fk = f ∗ only if Π = Π∗. Then, for any fixed

 > 0,

pr(Π ∈ SK−1 : ||Π− Π∗|| ≥  | x1, . . . , xN) → 0.

Π∗ is generally unique for normal f ′ks (Yakowitz 1968)
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Illustrative example
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Illustrative example

0.0 0.5 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

N=50
D
en
si
ty

Bayesian Screening for Group Differences in High-Throughput Data



Illustrative example
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Illustrative example
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Misspecification for finite mixtures

REMARK: Assume π∗
k > 0 for k = 1, . . . ,K and


π∗
k = 1.

Then, f ∗ =


π∗
k fk achieves the minimum KL-divergence in F

with respect to f0 if and only if


f1
f ∗

f0 = . . . =


fK
f ∗

f0.

If some π∗
k = 0, the minimum KL-divergence is achieved

where
 fk

f ∗ f0 are equivalent for all π∗
k > 0.
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Consistency under misspecification

THEOREM: Assume x
(0)
1 , . . . , x

(0)
N0

are independent with

density f (0), x
(1)
1 , . . . , x

(1)
N1

are independent with density f (1),
and let

f ∗(0) = argmin
f ∈F

KL(f (0)||f ) , f ∗(1) = argmin
f ∈F

KL(f (1)||f ).

Under uniqueness assumptions for f ∗(0) and f ∗(1),

if f (0) = f (1), pr(H0 | X ) → 1 as N → ∞ and

if f ∗(0) ∕= f ∗(1), pr(H0 | X ) → 0 as N → ∞.
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***END THEORETICAL INTERLUDE***
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TCGA array data: Glioma

N = 258 glioma tumor samples derived from astrocyte cells

Methylation measured for M ≈ 450, 000 CpG sites

Illumina HumanMethylation450 array

Map to ≈ 20000 different genes

Sites per gene ranges from 1 to 1032

Goal: study role of methylation in clinical heterogeneity

Lower grade gliomas (LGG) (N0 = 128) vs. Glioblastoma
Multiforme (GBM) (N1 = 130) tumors
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Hierarchical prior for distributional equality

Model shared prior probability for all 450, 000 CpGs?

P0 ∼ Beta(1, 1)

...or separate prior probabilities for each gene?

P0g
iid∼ Beta(1, 1) for g = 1, . . . ,G
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Hierarchical prior for distributional equality

Hierarchical compromise:

 

  . . . . 
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Hierarchical prior for distributional equality

Dirichlet process (DP) prior with Beta base distribution:

pg
iid∼ P ,

P ∼ DP(Beta(a, b),α)

Equivalently,

pg =
∞

h=1

πhδθh ,

δθh is a point mass at θh

θh
iid∼ Beta(a, b)

Weights πh realized from a stick-breaking process:

πh = Vh



l<h

(1− Vl)

Vh
iid∼ Beta(1,α).
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DP prior: hyperparameters

Beta(a, b) base controls marginal prior of association

P(CpG association) =
a

a+ b
.

Concentration α controls level of clustering

α → 0: shared Beta(a, b) prior for all markers

p1 = · · · = pG ∼ Beta(a, b)

α → ∞: independent Beta(a, b) prior for each gene

pg
iid∼ Beta(a, b)

In practice set a = b = α = 1
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TCGA Glioma analysis
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TCGA Glioma analysis

LGG vs. GBM
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TCGA Glioma analysis

CpGs with posterior probability of equality < 0.01

LGG vs. GBM
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TCGA Glioma: Permutation

Permute data under two different schemes:

Randomly scramble the gene labels across CpGs

Randomly scramble the class labels at each CpG

Apply two methods to permutated datasets

DP (hierarchical) prior for gene-level probabilities

Independent (separate) inference of gene-level probabilities
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TCGA Glioma analysis
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Thank you!
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R package BayesianScreening:

github.com/lockEF/BayesianScreening

Email: elock@umn.edu
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