Bayesian Screening for Group Differences in High-Throughput Data

April 27, 2025

Bayesian Screening for Group Differences in High-Throughput

• Methyl binds to CpG (cytosine-phosphate-guanine) sites

- Over 25 million CpG sites in human genome
- Methylation varies over sites / individuals / cell types
- Can affect gene transcription

TCGA array data: BRCA

- N = 597 breast cancer tumor samples
 - From The Cancer Genome Atlas project
- Methylation measured for M = 21,986 CpG sites
 - Illumina HumanMethylation27 array
 - Measurements from 0 (no methylation) to 1 (fully methylated)
- Goal: study role of methylation in clinical heterogeneity
 - Basal ($N_0 = 112$) vs. non-Basal ($N_1 = 485$) tumor subtypes

Example distributions

• Distribution of methylation values for select CpG sites

Methylation

• Model distribution of CpG m (m = 1, ..., M) as a mixture:

$$x_{mn} \sim \sum_{k=1}^{K} \pi_{mk} F_k$$

•
$$\{F_k\}_{k=1}^K$$
 are shared kernels

- $\Pi_m = {\pi_{mk}}_{k=1}^{K}$ are CpG-specific weights
- F_k is Normal (μ_k, σ_k) truncated between 0 and 1

- Use normal-inverse-gamma prior for (μ_k, σ_k) 's
- Use Dirichlet(α) prior for Π_m 's
- Gibbs sample from conditional posteriors of
 - $\{(\mu_k, \sigma_k)\}_{k=1}^K$
 - $\{\Pi_m\}_{m=1}^M$
 - Kernel memberships $\{C_m\}_{m=1}^M$
- ${\scriptstyle \bullet}$ Estimate α via maximum likelihood during sampling

- Choose K to maximize likelihood under cross validation.
- For fixed K:
 - Estimate F_1, \ldots, F_K , and α from a sub-sample of CpGs
 - For each remaining CpG:
 - Hold out a random observation
 - Estimate kernel weights on N-1 remaining observations
 - Compute log-density for held out sample
 - Consider mean log-density for all held-out observations

Cross-validated log-likelihood

• Choose K = 9

Kernel distributions

Fitted mixture examples

cg18239753

cg26668713

Test for group equality

- For group comparisons at a CpG, t- and Wilcoxon tests are most common
 - Bock 2012, Laird 2013
- General tests for distributional equality are rarely used
- But they are well motivated...
 - Cancer & normal cells show different variability (Hansen 2011)
 - Groups may have differential "stability" across cells:

Test for group equality

- Compare Basal vs. non-Basal tumor subtypes at each CpG
 - Assess whether subtype distributions are different
- Subtype distributions $F_m^{(0)}, F_m^{(1)}$ are mixture of common kernels

$$F_m^{(0)} = \sum_{k=1}^K \pi_{mk}^{(0)} F_k$$
 and $F_m^{(1)} = \sum_{k=1}^K \pi_{mk}^{(1)} F_k$,

• For each *m* test

$$H_{0m}: \pi_{mk}^{(0)} = \pi_{mk}^{(1)} \text{ for all } k$$
$$H_{1m}: \pi_{mk}^{(0)} \neq \pi_{mk}^{(1)} \text{ for some } k.$$

• Estimate and fix F_1, \ldots, F_K , and α as before.

• Under
$$H_{0m}$$
, $\Pi_m^{(0)} = \Pi_m^{(1)} = \Pi_m \sim \mathsf{Dirichlet}(lpha)$

- Under H_{1m} , $\Pi_m^{(0)}$, $\Pi_m^{(1)} \sim \text{Dirichlet}(\alpha)$ are independent
- P_0 is shared prior probability of equality at a given CpG
 - P₀ given Uniform(0, 1) prior (see Scott & Berger 2010)

Posterior computation

• The full conditional posterior probability for H_{0m} is

$$\frac{P_0\beta(\alpha)\beta(\vec{n}_m+\alpha)}{P_0\beta(\alpha)\beta(\vec{n}_m+\alpha)+(1-P_0)\beta(\vec{n}_m^{(0)}+\alpha)\beta(\vec{n}_m^{(1)}+\alpha)}.$$

- \$\vec{n}_m^{(i)}\$ gives number of realizations in group \$i\$ from each kernel
 \$\vec{n}_m = \vec{n}_m^{(0)} + \vec{n}_m^{(1)}\$
- β is the multivariate beta function

$$\beta(\alpha) = \frac{\prod_{k=1}^{K} \Gamma(\alpha_k)}{\Gamma(\sum_{k=1}^{K} \alpha_k)}.$$

Posterior computation

- In practice $\vec{n}_m^{(0)}$, $\vec{n}_m^{(1)}$ are unknown
- Kernel memberships are inferred probabilistically
- Gibbs sample from conditional posteriors of
 - $\{\Pi_m^{(0)}, \Pi_m^{(1)}\}_{m=1}^M$
 - $\{\vec{n}_m^{(0)}, \vec{n}_m^{(1)}\}_{m=1}^M$
 - $\{P(H_{0m} \mid \vec{n}_m^{(0)}, \vec{n}_m^{(1)})\}_{m=1}^M$
 - *P*₀
- Average over conditional posterior probabilities for H_{0m}

Basal vs. non-Basal groups

- Prior probability of equality: $\hat{P}_0 = 0.82$
- Distribution of posterior probabilities: Histogram of pr(H_{Gm}|X)

Basal vs. non-Basal groups

cg10203483, pr(HolX)=0.21

cg27324619, pr(HoIX)=0.66

cg27655905, pr(H₀IX)>0.999

Basal vs. non-Basal groups

- 2117 CpG sites with $P(H_{0m}|X) < 0.01$
- Consider association with expression at their gene:

• Negative association & in PAM50 signature (Parker, 2009):

• MYBL2, EGFR, MIA, SFRP1 and MLPH

- Frequentist tests for distributional equality
 - Anderson-Darling, Shapiro-Wilk
- Bayesian nonparametric tests using Dirichlet processes
 - Dunson & Peddada 2008, Pennell & Dunson 2008
- Bayesian nonparametric tests using Polya trees
 - Ma & Wang 2011, Holmes et al 2014

Methods comparison for TCGA data

- Apply several methods to TCGA data
 - t-test, Wilcoxon test, Anderson-Darling test, Dunson & Peddada (RDDP), Ma & Wang (co-OPT), Holmes et al. (PT), and shared kernel test with fixed $P_0 = 0.5$.
- Permute class labels for each CpG and apply again.
- Permutation creates a null model to assess type I error
- Compare distribution of results (p-values or Bayes factors) for true and permuted data.

Methods comparison for TCGA data

Type I error rate

****THEORETICAL INTERLUDE*****

Bayesian Screening for Group Differences in High-Throughput

• Two distributions $F^{(0)}, F^{(1)}$ are mixtures

$$F^{(0)} = \sum_{k=1}^{K} \pi_k^{(0)} F_k$$
 and $F^{(1)} = \sum_{k=1}^{K} \pi_k^{(1)} F_k$,

• Test whether
$$\pi_k^{(0)} = \pi_k^{(1)} \forall k$$
.

- $F^{(0)}, F^{(1)}$ describe two populations with same strata
 - Test whether strata have different proportions

Abstract testing framework

- If strata/kernel memberships are known:
 - Test for association in $2 \times K$ table
 - Frequentist approaches: Chi-Square, Fisher's exact test
 - Bayesian Approaches: Good & Crook 1987, Albert 1997
- If memberships (and perhaps the F_k 's) are unknown:
 - Little statistical literature
 - Addressed partly in Xu et al 2010

• Consider behavior of the full conditional for H_0 :

$$\frac{P_0\beta(\alpha)\beta(\vec{n}+\alpha)}{P_0\beta(\alpha)\beta(\vec{n}_m+\alpha)+(1-P_0)\beta(\vec{n}^{(0)}+\alpha)\beta(\vec{n}^{(1)}+\alpha)}$$

 $\text{ as } \textit{N} \to \infty.$

• For the following assume:

•
$$\lambda_0 = rac{N_0}{N_0 + N_1}$$
 is fixed as $N_0 + N_1 = N o \infty$

Asymptotic forms

- THEOREM: Can derive a closed asymptotic form for the full conditional
- CORROLARY: Can fully characterize asymptotic distribution under *H*₀ and *H*₁
- Under $H_0: \Pi^{(0)} = \Pi^{(1)} = \Pi$, the log Bayes factor has order

$$\frac{K-1}{2}\log(N)+O_p(1)$$

• Under $H_1 : \Pi^{(0)} \neq \Pi^{(1)}$, let $\Pi^* = \lambda_0 \Pi^{(0)} + (1 - \lambda_0) \Pi^{(1)}$. The log of the Bayes factor has order

$$-N\sum\left\{\lambda_{0}\pi_{k}^{(0)}\log\left(\frac{\pi_{k}^{(0)}}{\pi_{k}^{*}}\right)+(1-\lambda_{0})\pi_{k}^{(1)}\log\left(\frac{\pi_{k}^{(1)}}{\pi_{k}^{*}}\right)\right\}+O_{p}\left(N^{1/2}\right),$$

- Posterior probability of H_0 converges
 - Sublinearly to 1 under H_0
 - Exponentially to 0 under H_1
- Such rates have been observed for several Bayesian tests
 - Kass & Raftery 1995; Walker 2004; Johnson & Rossell 2010.
- Often such models are "local prior densities"
 - The parameter space under H_0 has positive density under H_1

- Bayesian context:
 - True distribution is not within support of prior
- E.g: data may not result from a finite Gaussian mixture
- Misspecified models not "fully" consistent
- May still be consistent as a test for distributional equality

Consistency under misspecification

- Use work of Kleijn & Van der Vaaart (2006)
- General behavior under Bayesian misspecification:
 - $\bullet~$ Let ${\mathbb F}$ be space of all distributions admitted by prior
 - Let F_0 be data generating distribution
 - Let F^* be distribution in \mathbb{F} minimizing KL-divergence to F_0
 - Posterior concentrates on F^* as $N o \infty$
- Little work on misspecification asymptotics for Bayesian tests

Misspecification for finite mixtures

- Let x_1, \ldots, x_N be independent with density f_0 .
- Let \mathbb{F} be define all convex combinations of densities $\{f_k\}_{k=1}^{K}$
- Let P define a prior with positive support over \mathbb{F} .

• Let
$$f^* = \underset{f \in \mathbb{F}}{\operatorname{argmin}} \operatorname{KL}(f_0 || f^*)$$

 THEOREM: let Π* = (π₁^{*},...,π_K^{*}) be the component weights corresponding to f*. Assume Π* is unique in that ∑π_kf_k = ∑π_k^{*}f_k = f* only if Π = Π*. Then, for any fixed ϵ > 0,

$$\mathsf{pr}(\mathsf{\Pi} \in \mathbb{S}^{K-1} : ||\mathsf{\Pi} - \mathsf{\Pi}^*|| \ge \epsilon \mid x_1, \dots, x_N) \to 0.$$

• Π^* is generally unique for normal $f'_k s$ (Yakowitz 1968)

True distribution

Bayesian Screening for Group Differences in High-Throughput

N=50

N=500

N=5000

Misspecification for finite mixtures

 REMARK: Assume π^{*}_k > 0 for k = 1,..., K and ∑π^{*}_k = 1. Then, f^{*} = ∑π^{*}_kf_k achieves the minimum KL-divergence in 𝔽 with respect to f₀ if and only if

$$\int \frac{f_1}{f^*} f_0 = \ldots = \int \frac{f_K}{f^*} f_0.$$

If some $\pi_k^* = 0$, the minimum KL-divergence is achieved where $\int \frac{f_k}{f^*} f_0$ are equivalent for all $\pi_k^* > 0$.

Consistency under misspecification

• THEOREM: Assume $x_1^{(0)}, \ldots, x_{N_0}^{(0)}$ are independent with density $f^{(0)}, x_1^{(1)}, \ldots, x_{N_1}^{(1)}$ are independent with density $f^{(1)}$, and let

$$f^{*(0)} = \operatorname*{argmin}_{f \in \mathbb{F}} \operatorname{\mathsf{KL}}(f^{(0)}||f) \ , \ f^{*(1)} = \operatorname*{argmin}_{f \in \mathbb{F}} \operatorname{\mathsf{KL}}(f^{(1)}||f).$$

Under uniqueness assumptions for $f^{*(0)}$ and $f^{*(1)}$,

• if $f^{(0)} = f^{(1)}$, $pr(H_0 \mid X) \to 1$ as $N \to \infty$ and • if $f^{*(0)} \neq f^{*(1)}$, $pr(H_0 \mid X) \to 0$ as $N \to \infty$.

END THEORETICAL INTERLUDE

Bayesian Screening for Group Differences in High-Throughput

TCGA array data: Glioma

- N = 258 glioma tumor samples derived from astrocyte cells
- Methylation measured for $M \approx 450,000$ CpG sites
 - Illumina HumanMethylation450 array
 - Map to \approx 20000 different genes
 - Sites per gene ranges from 1 to 1032
- Goal: study role of methylation in clinical heterogeneity
 - Lower grade gliomas (LGG) ($N_0 = 128$) vs. Glioblastoma Multiforme (GBM) ($N_1 = 130$) tumors

• Model shared prior probability for all 450,000 CpGs?

 $P_0 \sim \text{Beta}(1,1)$

• ...or separate prior probabilities for each gene?

$$P_{0g} \stackrel{iid}{\sim} \mathsf{Beta}(1,1) \quad \text{ for } g = 1, \dots, G$$

Hierarchical prior for distributional equality

• Hierarchical compromise:

Bayesian Screening for Group Differences in High-Throughput

Hierarchical prior for distributional equality

• Dirichlet process (DP) prior with Beta base distribution:

$$p_g \stackrel{iid}{\sim} P,$$
$$P \sim \mathsf{DP}(\mathsf{Beta}(a, b), \alpha)$$

Equivalently,

$$p_g = \sum_{h=1}^{\infty} \pi_h \delta_{\theta_h},$$

- δ_{θ_h} is a point mass at θ_h
- $\theta_h \stackrel{iid}{\sim} \text{Beta}(a, b)$
- Weights π_h realized from a *stick-breaking process*:

$$\pi_h = V_h \prod_{l < h} (1 - V_l)$$
$$V_h \stackrel{iid}{\sim} \text{Beta}(1, \alpha).$$

DP prior: hyperparameters

• Beta(a, b) base controls marginal prior of association

$$P(\mathsf{CpG association}) = \frac{a}{a+b}.$$

- \bullet Concentration α controls level of clustering
 - $\alpha \rightarrow 0$: shared Beta(a, b) prior for all markers

$$p_1 = \cdots = p_G \sim \text{Beta}(a, b)$$

• $\alpha \to \infty$: independent Beta(a, b) prior for each gene

$$p_g \stackrel{iid}{\sim} \mathsf{Beta}(a,b)$$

• In practice set $a = b = \alpha = 1$

Gene-level probabilities

pg

BST2 CpGs

LGG vs. GBM

• CpGs with posterior probability of equality < 0.01

LGG vs. GBM

- Permute data under two different schemes:
 - Randomly scramble the gene labels across CpGs
 - 2 Randomly scramble the class labels at each CpG
- Apply two methods to permutated datasets
 - OP (hierarchical) prior for gene-level probabilities
 - Independent (separate) inference of gene-level probabilities

Bayesian Screening for Group Differences in High-Throughput

- References:
 - EF Lock and DB Dunson. Shared kernel Bayesian screening. *Biometrika*, **102**: 829–842, 2015.
 - EF Lock and DB Dunson. Bayesian genome- and epigenome-wide association studies with gene-level dependence. *Biometrics*, **73** (3): 1018–1028, 2017.
 - A Kaplan, EF Lock and M Fiecas. Bayesian GWAS with structured and non-local priors. Preprint.
- R package BayesianScreening:
 - github.com/lockEF/BayesianScreening
- Email: elock@umn.edu