
Vol. 29 no. 20 2013, pages 2610–2616
BIOINFORMATICS ORIGINAL PAPER doi:10.1093/bioinformatics/btt425

Systems biology Advance Access publication August 28, 2013

Bayesian consensus clustering
Eric F. Lock1,2,* and David B. Dunson1

1Department of Statistical Science, Duke University, Durham, NC 27708, USA and 2Center for Human Genetics, Duke
University Medical Center, Durham, NC 27710, USA

Associate Editor: Alfonso Valencia

ABSTRACT

Motivation: In biomedical research a growing number of platforms 
and technologies are used to measure diverse but related information, 
and the task of clustering a set of objects based on multiple sources of 
data arises in several applications. Most current approaches to multi-

source clustering either independently determine a separate clustering 
for each data source or determine a single ‘joint’ clustering for all data 
sources. There is a need for more flexible approaches that simultan-

eously model the dependence and the heterogeneity of the data 
sources.

Results: We propose an integrative statistical model that permits a 
separate clustering of the objects for each data source. These separ-

ate clusterings adhere loosely to an overall consensus clustering, and 
hence they are not independent. We describe a computationally scal-

able Bayesian framework for simultaneous estimation of both the 
consensus clustering and the source-specific clusterings. We demon-

strate that this flexible approach is more robust than joint clustering of 
all data sources, and is more powerful than clustering each data 
source independently. We present an application to subtype identifi-

cation of breast cancer tumor samples using publicly available data 
from The Cancer Genome Atlas.

Availability: R code with instructions and examples is available 
at http://www.tc.umn.edu/~elock/Software.html.
Contact: Eric.F.Lock@gmail.com
Supplementary information: Supplementary data are available at 
Bioinformatics online.
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1 INTRODUCTION

1.1 Motivation

Several fields of research now analyze multisource data (also

called multimodal data), in which multiple heterogeneous data-

sets describe a common set of objects. Each dataset represents a

distinct mode of measurement or domain.

While the methodology described in this article is broadly ap-

plicable, our primary motivation is the integrated analysis of

heterogeneous biomedical data. The diversity of platforms and

technologies that are used to collect genomic data, in particular,

is expanding rapidly. Often multiple types of genomic data,

measuring various biological components, are collected for a

common set of samples. For example, The Cancer Genome

Atlas (TCGA) is a large-scale collaborative effort to collect

and catalog data from several genomic technologies. The inte-

grative analysis of data from these disparate sources provides a
more comprehensive understanding of cancer genetics and
molecular biology.

Separate analyses of each data source may lack power and will
not capture intersource associations. At the other extreme, a
joint analysis that ignores the heterogeneity of the data may
not capture important features that are specific to each data

source. Exploratory methods that simultaneously model shared
features and features that are specific to each data source have
recently been developed as flexible alternatives (Lock et al., 2013;

Löfstedt and Trygg, 2011; Ray et al., 2012; Zhou et al., 2012).
The demand for such integrative methods motivates a dynamic
area of statistics and bioinformatics.

This article concerns integrative clustering. Clustering is a
widely used exploratory tool to identify similar groups of objects
(for example, clinically relevant disease subtypes). Hundreds of

general algorithms to perform clustering have been proposed.
However, our work is motivated by the need for an integrative
clustering method that is computationally scalable and robust to
the unique features of each data source.

In Section 3.3, we apply our integrative clustering method to
mRNA expression, DNA methylation, microRNA expression
and proteomic data from TCGA for a common set of breast

cancer tumor samples. These four data sources represent differ-
ent but highly related and dependent biological components.
Moreover, breast cancer tumors are recognized to have import-

ant distinctions that are present across several diverse genomic
and molecular variables. A fully integrative clustering approach
is necessary to effectively combine the discriminatory power of

each data source.

1.2 Related work

Most applications of clustering multisource data follow one of

two general approaches:

(1) Clustering of each data source separately, potentially fol-
lowed by a post hoc integration of these separate

clusterings.

(2) Combining all data sources to determine a single ‘joint’
clustering.

Under approach (1), the level of agreement between the sep-

arate clusterings may be measured by the adjusted Rand index
(Hubert and Arabie, 1985) or a similar statistic. Furthermore,
consensus clustering (also called ensemble clustering) can be used

to determine an overall partition of the objects that agrees the
most with the source-specific clusterings. Several objective*To whom correspondence should be addressed
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functions and algorithms to perform consensus clustering have

been proposed [for a survey see Nguyen and Caruana (2007)].

Most of these methods do not inherently model uncertainty, and

statistical models assume that the separate clusterings are known

in advance (Wang et al., 2010, 2011). Consensus clustering is

most commonly used to combine multiple clustering algorithms,

or multiple realizations of the same clustering algorithm, on a

single dataset. Consensus clustering has also been used to inte-

grate multisource biomedical data (Cancer Genome Atlas

Network, 2012). Such an approach is attractive in that it

models source-specific features, yet still determines an overall

clustering, which is often of practical interest. However, the

two stage process of performing entirely separate clusterings fol-

lowed by post hoc integration limits the power to identify and

exploit shared structure (see Section 3.2 for an illustration of this

phenomenon).
Approach (2) effectively exploits shared structure, at the ex-

pense of failing to recognize features that are specific to each

data source. Within a model-based statistical framework, one

can find the clustering that maximizes a joint likelihood.

Assuming that each source is conditionally independent given

the clustering, the joint likelihood is the product of the likelihood

functions for each data source. This approach is used by

Kormaksson et al. (2012) in the context of integrating gene ex-

pression and DNA methylation data. The iCluster method (Mo

et al., 2013; Shen et al., 2009) performs clustering by first fitting a

Gaussian latent factor model to the joint likelihood; clusters are

then determined by K-means clustering of the factor scores. Rey

and Roth (2012) propose a dependency-seeking model in which

the goal is to find a clustering that accounts for associations

across the data sources.
More flexible methods allow for separate but dependent

source clusterings. Dependent models have been used to simul-

taneously cluster gene expression and proteomic data (Rogers

et al., 2008), gene expression and transcription factor binding

data (Savage et al., 2010) and gene expression and copy

number data (Yuan et al., 2011). Kirk et al. (2012) describe a

more general dependence model for two or more data sources.

Their approach, called Multiple Dataset Integration (MDI), uses

a statistical framework to cluster each data source while simul-

taneously modeling the pairwise dependence between clusterings.

Savage et al. (2013) use MDI to integrate gene expression,

methylation, microRNA and copy number data for glioblastoma

tumor samples from TCGA. The pairwise dependence model

does not explicitly model adherence to an overall clustering,

which is often of practical interest.

2 METHODS

2.1 Finite Dirichlet mixture models

Here we briefly describe the finite Dirichlet mixture model for clustering a

single dataset, with the purpose of laying the groundwork for the inte-

grative model given in Section 2.2. Given data Xn for N objects

(n ¼ 1, . . . ,N), the goal is to partition these objects into at most K clus-

ters. Typically Xn is a multidimensional vector, but we present the model

in sufficient generality to allow for more complex data structures. Let

fðXnj�Þ define a probability model for Xn given parameter(s) �. For ex-

ample, f may be a Gaussian density defined by the mean and variance

� ¼ ð�, �2Þ. Each Xn is drawn independently from a mixture distribution

with K components, specified by the parameters �1, . . . , �K. Let

Cn 2 f1, . . . ,Kg represent the component corresponding to Xn, and �k
be the probability that an arbitrary object belongs to cluster k:

�k ¼ PðCn ¼ kÞ:

Then, the generative model is

Xn � fð�j�kÞ with probability �k:

Under a Bayesian framework, one can put a prior distribution on

� ¼ ð�1, . . . ,�KÞ and the parameter set � ¼ ð�1, . . . , �KÞ. It is natural

to use a Dirichlet prior distribution for �. Standard computational meth-

ods such as Gibbs sampling can then be used to approximate the poster-

ior distribution for �, � and C ¼ ðC1, . . . ,CNÞ. The Dirichlet prior is

characterized by a K-dimensional concentration parameter � of positive

reals. Low prior concentration (for example, �k � 1) will allow some of

the estimated �k to be small, and therefore N objects may not represent

all K clusters. Letting K!1 gives a Dirichlet process.

2.2 Integrative model

We extend the Dirichlet mixture model to accommodate data from M

sources X1, . . . ,XM. Each data source is available for a common set of N

objects, where Xmn represents data m for object n. Each data source

requires a probability model fmðXnj�mÞ parametrized by �m. Under the

general framework presented here, each Xm may have disparate structure.

For example, X1n may give an image where f1 defines the spectral density

for a Gaussian random field, while X2n may give a categorical vector

where f2 defines a multivariate probability mass function.

We assume there is a separate clustering of the objects for each data

source, but that these adhere loosely to an overall clustering. Formally,

each Xmn n ¼ 1, . . . ,N is drawn independently from a K-component

mixture distribution specified by the parameters �m1, . . . , �mK. Let

Lmn 2 f1, . . . ,Kg represent the component corresponding to Xmn.

Furthermore, let Cn 2 f1, . . . ,Kg represent the overall mixture compo-

nent for object n. The source-specific clusterings Lm ¼ ðLm1, . . . ,LmNÞ are

dependent on the overall clustering C ¼ ðC1, . . . ,CNÞ:

PðLmn ¼ kjCnÞ ¼ �ðk,Cn, �mÞ

where �m adjusts the dependence function �. The data Xm are independ-

ent of C conditional on the source-specific clustering Lm. Hence, C serves

only to unify L1, . . . ,LM. The conditional model is

PðLmn ¼ kjXmn,Cn, �mkÞ / �ðk,Cn,�mÞfmðXmnj�mkÞ:

Throughout this article, we assume � has the simple form

�ðLmn,Cn, �mÞ ¼
�mifCn ¼ Lmn
1��m
K�1 otherwise

�
ð1Þ

where �m 2 ½
1
K , 1� controls the adherence of data source m to the overall

clustering. More simply �m is the probability that Lmn ¼ Cn. So, if

�m ¼ 1, then Lm ¼ C. The �m are estimated from the data together

with C and L1, . . . ,Lm. In practice we estimate each �m separately, or

assume that �1 ¼ . . . ¼ �M and hence each data source adheres equally to

the overall clustering. The latter is favored when M¼ 2 for identifiability

reasons. More complex models that permit dependence of the �ms are

also potentially useful.

Let �k be the probability that an object belongs to the overall cluster k:

�k ¼ PðCn ¼ kÞ:

We assume a Dirichlet(�) prior distribution for � ¼ ð�1, . . . ,�KÞ. The

probability that an object belongs to a given source-specific cluster fol-

lows directly:

PðLmn ¼ kj�Þ ¼ �k�m þ ð1� �kÞ
1� �m
K� 1

: ð2Þ
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Moreover, a simple application of Bayes rule gives the conditional distri-

bution of C:

PðCn ¼ kjL,�, �Þ / �k
YM
m¼1

�ðLmn, k,�mÞ,

where � is defined as in (1).

The number of possible clusters K is the same for L1, . . . ,LM and C.

The link function � naturally aligns the cluster labels, as cases in which

the clusterings are not well aligned (a permutation of the labels would

give better agreement) will have low posterior probability. The number of

clusters that are actually represented may vary, and generally the source-

specific clusterings Lm will represent more clusters than C, rather than

vice versa. This follows from Equation (2) and is illustrated in Section 2

of the Supplementary Material. Intuitively if object n is not allocated to

any overall cluster in data source m (i.e. Lmn=2C), then Xmn does not

conform well to any overall pattern in the data.

Table 1 summarizes the mathematical notation used for the integrative

model.

2.3 Marginal forms

Integrating over the overall clustering C gives the joint marginal distri-

bution of L1, . . . ,LM:

PðfLmn ¼ kmg
M
m¼1j�, �Þ /

XK
k¼1

�k
YM
m¼1

�ðkm, k,�mÞ: ð3Þ

Under the assumption that �1 ¼ . . . ¼ �M the model simplifies:

PðfLmn ¼ kmg
M
m¼1j�, �Þ /

XK
k¼1

�kU
tk ð4Þ

where tk is the number of clusters equal to k and U ¼ ðK�1Þ�11��1
� 1. This

marginal form facilitates comparison with the MDI method for depend-

ent clustering. In the MDI model 	ij40 control the strength of associ-

ation between the clusterings Li and Lj:

PðfLmn ¼ kmg
M
m¼1j

~�,�Þ /
YM
m¼1

~�mkm

Y
fi5jjki¼kjg

ð1þ 	ijÞ ð5Þ

where ~�mk ¼ PðLmn ¼ kÞ. For K ¼ 2 and ~�1� ¼ ~�2�, it is straightforward

to show that (4) and (5) are functionally equivalent under a parameter

substitution (see Section 3 of the Supplementary Material). There is no

such general equivalence between the models for K42 or M42, regard-

less of restrictions on ~� and �. This is not surprising, as MDI gives a

general model of pairwise dependence between clusterings rather than a

model of adherence to an overall clustering.

2.4 Estimation

Here we present a general Bayesian framework for estimation of the

integrative clustering model. We use a Gibbs sampling procedure to ap-

proximate the posterior distribution for the parameters introduced in

Section 2.2. The algorithm is general in that we do not assume any spe-

cific form for the fm and the parameters �mk. We use conjugate prior

distributions for �m, � and (if possible) �mk.

� �m � TBetaðam, bm,
1
KÞ, the Betaðam, bmÞ distribution truncated

below by 1
K. By default we choose am ¼ bm ¼ 1, so that the prior

for �m is uniformly distributed between 1
K and 1.

� � � Dirichletð�0Þ. Bydefaultwe choose�0 ¼ ð1, 1, . . . , 1Þ, so that the

prior for � is uniformly distributed on the standard ðM� 1Þ-simplex.

� The �mk have prior distribution pm. In practice, one should choose pm
so that sampling from the conditional posterior pmð�mkjXm,LmÞ is

feasible.

Markov chain Monte Carlo (MCMC) proceeds by iteratively sampling

from the following conditional posterior distributions:

� �mjXm,Lm � pmð�mkjXm,LmÞ for k ¼ 1, . . . ,K.

� LmjXm,�m, �m,C � PðkjXmn,Cn, �mk, �mÞ for n ¼ 1, . . . ,N, where

PðkjXmn,Cn,�mÞ / �ðk,Cn,�mÞfmðXmnj�mkÞ:

� �mjC,Lm � TBetaðam þ 
m, bm þN� 
m,
1
KÞ, where 
m is the num-

ber of samples n satisfying Lmn ¼ Cn.

� CjLm,�,� � Pðkj�, fLmn,�mg
M
m¼1Þ for n ¼ 1, . . . ,N, where

Pðkj�, fLmn,�mg
M
m¼1Þ / �k

YM
m¼1

�ðk,Lmn, �mÞ

� �jC � Dirichletð�0 þ �Þ, where �k is the number of samples allo-

cated to cluster k in C.

This algorithm can be suitably modified under the assumption that

�1 ¼ . . . ¼ �M (see Section 1.2 of the Supplementary Material).

Each sampling iteration produces a different realization of the cluster-

ings C,L1, � � � ,Lm, and together these samples approximate the posterior

distribution for the overall and source-specific clusterings. However, a

point estimate may be desired for each of C,L1, � � � ,Lm to facilitate in-

terpretation of the clusters. In this respect, methods that aggregate over

the MCMC iterations to produce a single clustering, such as that

described in Dahl (2006), can be used.

It is possible to derive a similar sampling procedure using only the

marginal form for the source-specific clusterings given in Equation (3).

However, the overall clustering C is also of interest in most applications.

Furthermore, incorporating C into the algorithm can actually improve

computational efficiency dramatically, especially if M is large. As pre-

sented, each MCMC iteration can be completed in O(MNK) operations.

If the full joint marginal distribution of L1, . . . ,LM is used the compu-

tational burden increases exponentially withM (this presents a bottleneck

for the MDI method).

For each iteration, Cn is determined randomly from a distribution that

gives higher probability to clusters that are prevalent in fL1n, . . . ,Lmng. In

this sense, C is determined by a random consensus clustering of the

source-specific clusterings. Hence, we refer to this approach as Bayesian

consensus clustering (BCC). BCC differs from traditional consensus clus-

tering in three key aspects.

(1) Both the source-specific clusterings and the consensus clustering

are modeled in a statistical way that allows for uncertainty in all

parameters.

(2) The source-specific clusterings and the consensus clustering are

estimated simultaneously, rather than in two stages. This permits

Table 1. Notation

N Number of objects

M Number of data sources

K Number of clusters

Xm Data source m

Xmn Data for object n, source m

fm Probability model for source m

�mk Parameters for fm, cluster k

pm Prior distribution for �mk

Cn Overall cluster for object n

�k Probability that Cn ¼ k

Lmn Cluster specific to Xmn

� Dependence function for Cn and Lmn

�m Probability that Lmn ¼ Cn

E.F.Lock and D.B.Dunson
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borrowing of information across sources for more accurate cluster

assignments.

(3) The strength of association to the consensus clustering for each data

source is learned from the data and accounted for in the model.

We have developed software for the R environment for statistical

computing (R Development Core Team, 2012) to perform BCC on multi-

variate continuous data using a Normal-Gamma conjugate prior distri-

bution for cluster-specific means and variances. Full computational

details for this implementation are given in Section 1.1 of the

Supplementary Material. This software is open source and may be mod-

ified for use with alternative likelihood models (e.g. for categorical or

functional data).

2.5 Choice of K

One can infer the number of clusters in the model by specifying a large

value for the maximum number of clusters K, for example K¼N. The

number of clusters realized in C and the Lm may still be small. However,

we find that this is not the case for high-dimensional structured data such

as that used for the genomics application in Section 3.3. The model tends

to select a large number of clusters even if the Dirichlet prior concentra-

tion parameters �0 are small. The number of clusters realized using a

Dirichlet process increases with the sample size; hence, if the number of

mixture component is indeed finite, the estimated number of clusters is

inconsistent as N!1 (Miller and Harrison, 2013). This is undesirable

for exploratory applications in which the goal is to identify a small

number of interpretable clusters.

Alternatively, we consider a heuristic approach that selects the value of

K that gives maximum adherence to an overall clustering. For each K, the

estimated adherence parameters �m 2 ½
1
K , 1� are mapped to the unit inter-

val by the linear transformation

�	m ¼
K�m � 1

K� 1
:

We then select the value of K that results in the highest mean adjusted

adherence

��	 ¼
1

M

XM
m¼1

�	m:

This approach will generally select a small number of clusters that reveal

shared structure across the data sources.

3 RESULTS

3.1 Accuracy of �̂

We find that with reasonable signal the �m can generally be

estimated with accuracy and without substantial bias. To illus-
trate, we generate simulated datasets X1 : 1
 200 and

X2 : 1
 200 as follows:

(1) Let C define two clusters, where Cn ¼ 1 for

n 2 f1, . . . , 100g and Cn ¼ 2 for n 2 f101, . . . , 200g.

(2) Draw � from a Uniform(0.5,1) distribution.

(3) Form ¼ 1, 2 and n ¼ 1, . . . , 200, generateLmn 2 f1, 2gwith

probabilities PðLmn ¼ CnÞ ¼ � and PðLmn 6¼ CnÞ ¼ 1� �.

(4) For m ¼ 1, 2, draw values Xmn from a Normal(1.5,1) dis-
tribution if Lmn ¼ 1 and from a Normalð�1:5, 1Þ distribu-
tion if Lmn ¼ 2.

We generate 100 realizations of the above simulation, and es-

timate the model via BCC for each realization. We assume

�1 ¼ �2 in our estimation and use a uniform prior; further com-

putational details are given in Section 4 of the Supplementary

Material. Figure 1 displays �̂, the best estimate for both �1 and

�2, versus the true � for each realization. The point estimate

displayed is the mean over MCMC draws, and we also display

a 95% credible interval based on the 2.5–97.5 percentiles of the

MCMC draws. The estimated �̂ are generally close to the true �,
and the credible interval contains the true value in 91 of 100

simulations. See Section 4 of the Supplementary Material for a

more detailed study, including a simulation illustrating the effect

of the prior distribution on �̂.

3.2 Clustering accuracy

To illustrate the flexibility and advantages of BCC in terms of

clustering accuracy, we generate simulated data sources X1 and

X2 as in Section 3.1 but with Normal(1,1) and Normal(�1,1) as

our mixture distributions. Hence, the signal distinguishing the

two clusters is weak enough so that there is substantial overlap

within each simulated data source. We generate 100 simulations

and compare the results for four model-based clustering

approaches:

(1) Separate clustering, in which a finite Dirichlet mixture

model is used to determine a clustering separately for X1

and X2.

(2) Joint clustering, in which a finite Dirichlet mixture model

is used to determine a single clustering for the concate-

nated data ½X01 X
0
2�
0.

(3) Dependent clustering, in which we model the pairwise

dependence between each data source, in the spirit of

MDI.

(4) Bayesian consensus clustering.

The full implementation details for each method are given in

Section 5 of the Supplementary Material.

Fig. 1. Estimated �̂ versus true � for 100 randomly generated simula-

tions. For each simulation, the mean value �̂ is shown with a 95% cred-

ible interval

Bayesian consensus clustering
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We consider the relative error for each model in terms of the

average number of incorrect cluster assignments:

Source error ¼

PM
m¼1

PN
n¼1

1fL̂mn 6¼ Lmng

MN
,

Overall error ¼

PN
n¼1

1fĈn 6¼ Cng

N
,

where 1 is the indicator function. For joint clustering, the source

clustersbLm are identical. For separate and dependent clustering,

we determine an overall clustering by maximizing the posterior

expected adjusted Rand index (Fritsch and Ickstadt, 2009) of the

source clusterings.
The relative error for each clustering method with M¼ 2 and

M¼ 3 sources is shown in Figure 2. Smooth curves are fit to the

results for each method using LOESS local regression

(Cleveland, 1979) and display the relative clustering error for

each method as a function of �. Not surprisingly, joint clustering

performs well for � � 1 (perfect agreement) and separate cluster-

ing performs well when � � 0:5 (no relationship). BCC and de-

pendent clustering learn the level of cluster agreement, and hence

serve as a flexible bridge between these two extremes. Dependent

clustering does not perform as well with M¼ 3 sources, as the

pairwise dependence model does not assume an overall cluster-
ing and therefore has less power to learn the underlying structure

for M42.

3.3 Application to genomic data

We apply BCC to multisource genomic data on breast cancer

tumor samples from TCGA. For a common set of 348 tumor
samples, our full dataset includes

� RNA gene expression (GE) data for 645 genes.

� DNA methylation (ME) data for 574 probes.

� miRNA expression (miRNA) data for 423 miRNAs.

� Reverse phase protein array (RPPA) data for 171 proteins.

These four data sources are measured on different platforms

and represent different biological components. However, they all

represent genomic data for the same sample set and it is reason-

able to expect some shared structure. These data are publicly

available from the TCGA Data Portal. See http://people.duke.
edu/%7Eel113/software.html for R code to completely repro-

duce the following analysis, including instructions on how to

download and process these data from the TCGA Data Portal.
Breast cancer is a heterogeneous disease and is therefore a nat-

ural candidate for clustering. Previous studies have found

Fig. 2. Source-specific and overall clustering error for 100 simulations withM¼ 2 andM¼ 3 data sources, shown for joint clustering, separate clustering,

dependent clustering, BCC and BCC using the true �. A LOESS curve displays clustering error as a function of � for each method

E.F.Lock and D.B.Dunson
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anywhere from 2 (Duan, 2013) to 10 (Curtis et al., 2012) distinct

clusters based on a variety of characteristics. In particular, 4 com-

prehensive sample subtypes were previously identified based on a

multisource consensus clustering of the TCGA data (Cancer

Genome Atlas Network, 2012). These correspond closely to the

well-knownmolecular subtypes Basal, Luminal A, Luminal B and

HER2. These subtypes were shown to be clinically relevant, as

they may be used for more targeted therapies and prognosis.

We use the heuristic described in Section 2.5 to select the

number of clusters for BCC, with intent to determine a clustering

that is well-represented across the four genomic data sources. We

select K¼ 3 clusters, and posterior probability estimates were

converted to hard clusterings via Dahl (2006) to facilitate com-

parison and visualization. Table 2 shows a matching matrix com-

paring the overall clustering C with the comprehensive subtypes

defined by TCGA, as well as summary data for the BCC clusters.
The TCGA and BCC clusters show different structure but are

not independent (P-value 50:01; Fisher’s exact test). BCC clus-

ter 1 corresponds to the Basal subtype, which is characterized by

basal-like expression and a relatively poor clinical prognosis.

BCC cluster 2 is primarily a subset of the Luminal A samples,

which are genomically and clinically heterogeneous. DNA copy

number alterations, in particular, are a source of diversity for

Luminal A. On independent datasets Curtis et al. (2012) and

Jönsson et al. (2010) identify a subgroup of Luminal A that is

characterized by fewer copy number alterations and a more

favorable clinical prognosis (clusters IntClust 3 and Luminal-

simple, respectively). As a measure of copy number activity, we

compute the fraction of the genome altered (FGA) as described

in Cancer Genome Atlas Network (2012) Supplementary Section

VII (with threshold T¼ 0.50) for each BCC cluster. Clusters 1
and 3 had an FGA above 0.2, while Cluster 2 had an FGA of
0.10 (Table 2). For comparison, those Luminal A samples that

were not included in Cluster 2 had a substantially higher average
FGA of 0:17� 0:02. Cluster 3 primarily includes those samples
that are receptor (estrogen and/or progesterone) positive and

have higher FGA. These results suggest that copy number vari-
ation may contribute to breast tumor heterogeneity across sev-
eral genomic sources.

Figure 3 provides a point-cloud view of each dataset given by a
scatter plot of the first two principal components. The overall
and source-specific cluster index is shown for each sample, as

well as a point estimate and �95% credible interval for the ad-
herence parameter �. The GE data has by far the highest adher-
ence to the overall clustering (� ¼ 0:91); this makes biological

sense, as RNA expression is thought to have a direct causal re-
lationship with each of the other three data sources. The four

data sources show different sample structure, and the source-
specific clusters are more well-distinguished than the overall
clusters in each plot. However, the overall clusters are clearly

represented to some degree in all four plots. Hence, the flexible,
yet integrative, approach of BCC seems justified for these data.
Further details regarding the above analysis are given in

Section 6 of the Supplementary Material. These include the
prior specifications for the model, charts that illustrate mixing
over the MCMC draws, a comparison of the source-specific

clusterings Lmn to source-specific subtypes defined by TCGA,
clustering heatmaps for each data source and short-term survival
curves for each overall cluster.

4 DISCUSSION

This work was motivated by the perceived need for a general,
flexible and computationally scalable approach to clustering
multisource biomedical data. We propose BCC, which models

both an overall clustering and a clustering specific to each data
source. We view BCC as a form of consensus clustering, with
advantages over traditional methods in terms of modeling uncer-

tainty and the ability to borrow information across sources.
The BCC model assumes a simple and general dependence

between data sources. When an overall clustering is not

sought, or when such a clustering does not make sense as an
assumption, a more general model of cluster dependence (such
as MDI) may be more appropriate. Furthermore, a context-spe-

cific approach may be necessary when more is known about the
underlying dependence of the data. For example, Nguyen and

Gelfand (2011) exploit functional covariance models for time-
course data to determine overall and time-specific clusters.
Our implementation of BCC assumes the data are normally

distributed with cluster-specific mean and variance parameters. It
is straightforward to extend this approach to more complex clus-
tering models. In particular, models that assume clusters exist on

a sparse feature set (Tadesse et al., 2005) or allow for more gen-
eral covariance structure (Ghahramani and Beal, 1999) are grow-
ing in popularity.

While we focus on multisource biomedical data, the applica-
tions of BCC are potentially widespread. In addition to multi-
source data, BCC may be used to compare clusterings from

different statistical models for a single homogeneous dataset.

Table 2. BCC cluster versus TCGA comprehensive subtype matching

matrix and summary data for BCC clusters

BCC cluster

1 2 3

TCGA subtype

1 (Her2) 13 6 20

2 (Basal) 66 2 4

3 (Lum A) 3 80 78

4 (Lum B) 0 3 73

5-year survival 0.67� 0.20 0.94� 0.08 0.81� 0.11

FGA 0.22� 0.04 0.10� 0.02 0.20� 0.02

ERþ 13% 92% 94%

PRþ 7% 86% 75%

HER2þ 15% 12% 18%

8p11 amplification 32% 19% 42%

8q24 amplification 79% 39% 67%

5q13 deletion 61% 3% 14%

16q23 deletion 19% 66% 61%

Note: Summary data includes 5-year survival probabilities using the Kaplan–Meier

estimator, with 95% confidence interval; mean fraction of the genome altered

(FGA) using threshold T ¼ 0:5, with 95% confidence interval; receptor status for

estrogen (ER), progesteron (PR) and human epidermal growth factor 2 (HER2);

and copy number status for amplification at sites 8p11 and 8q23 and deletion at sites

5q13 and 16q23.
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